Composite primary keys versus unique object ID field
Most of the commonly used engines (MS SQL Server, Oracle, DB2, MySQL, etc.) would not experience noticeable issues using a surrogate key system. Some may even experience a performance boost from the use of a surrogate, but performance issues are highly platform-specific.
In general terms, the natural key (and by extension, composite key) verses surrogate key debate has a long history with no likely “right answer” in sight.
The arguments for natural keys (singular or composite) usually include some the following:
1) They are already available in the data model. Most entities being modeled already include one or more attributes or combinations of attributes that meet the needs of a key for the purposes of creating relations. Adding an additional attribute to each table incorporates an unnecessary redundancy.
2) They eliminate the need for certain joins. For example, if you have customers with customer codes, and invoices with invoice numbers (both of which are "natural" keys), and you want to retrieve all the invoice numbers for a specific customer code, you can simply use "SELECT InvoiceNumber FROM Invoice WHERE CustomerCode = 'XYZ123'"
. In the classic surrogate key approach, the SQL would look something like this: "SELECT Invoice.InvoiceNumber FROM Invoice INNER JOIN Customer ON Invoice.CustomerID = Customer.CustomerID WHERE Customer.CustomerCode = 'XYZ123'"
.
3) They contribute to a more universally-applicable approach to data modeling. With natural keys, the same design can be used largely unchanged between different SQL engines. Many surrogate key approaches use specific SQL engine techniques for key generation, thus requiring more specialization of the data model to implement on different platforms.
Arguments for surrogate keys tend to revolve around issues that are SQL engine specific:
1) They enable easier changes to attributes when business requirements/rules change. This is because they allow the data attributes to be isolated to a single table. This is primarily an issue for SQL engines that do not efficiently implement standard SQL constructs such as DOMAINs. When an attribute is defined by a DOMAIN statement, changes to the attribute can be performed schema-wide using an ALTER DOMAIN statement. Different SQL engines have different performance characteristics for altering a domain, and some SQL engines do not implement DOMAINS at all, so data modelers compensate for these situations by adding surrogate keys to improve the ability to make changes to attributes.
2) They enable easier implementations of concurrency than natural keys. In the natural key case, if two users are concurrently working with the same information set, such as a customer row, and one of the users modifies the natural key value, then an update by the second user will fail because the customer code they are updating no longer exists in the database. In the surrogate key case, the update will process successfully because immutable ID values are used to identify the rows in the database, not mutable customer codes. However, it is not always desirable to allow the second update – if the customer code changed it is possible that the second user should not be allowed to proceed with their change because the actual “identity” of the row has changed – the second user may be updating the wrong row. Neither surrogate keys nor natural keys, by themselves, address this issue. Comprehensive concurrency solutions have to be addressed outside of the implementation of the key.
3) They perform better than natural keys. Performance is most directly affected by the SQL engine. The same database schema implemented on the same hardware using different SQL engines will often have dramatically different performance characteristics, due to the SQL engines data storage and retrieval mechanisms. Some SQL engines closely approximate flat-file systems, where data is actually stored redundantly when the same attribute, such as a Customer Code, appears in multiple places in the database schema. This redundant storage by the SQL engine can cause performance issues when changes need to be made to the data or schema. Other SQL engines provide a better separation between the data model and the storage/retrieval system, allowing for quicker changes of data and schema.
4) Surrogate keys function better with certain data access libraries and GUI frameworks. Due to the homogeneous nature of most surrogate key designs (example: all relational keys are integers), data access libraries, ORMs, and GUI frameworks can work with the information without needing special knowledge of the data. Natural keys, due to their heterogeneous nature (different data types, size etc.), do not work as well with automated or semi-automated toolkits and libraries. For specialized scenarios, such as embedded SQL databases, designing the database with a specific toolkit in mind may be acceptable. In other scenarios, databases are enterprise information resources, accessed concurrently by multiple platforms, applications, report systems, and devices, and therefore do not function as well when designed with a focus on any particular library or framework. In addition, databases designed to work with specific toolkits become a liability when the next great toolkit is introduced.
I tend to fall on the side of natural keys (obviously), but I am not fanatical about it. Due to the environment I work in, where any given database I help design may be used by a variety of applications, I use natural keys for the majority of the data modeling, and rarely introduce surrogates. However, I don’t go out of my way to try to re-implement existing databases that use surrogates. Surrogate-key systems work just fine – no need to change something that is already functioning well.
There are some excellent resources discussing the merits of each approach:
http://www.google.com/search?q=natural+key+surrogate+key
http://www.agiledata.org/essays/keys.html
http://www.informationweek.com/news/software/bi/201806814
I've been developing database applications for 15 years and I have yet to come across a case where a non-surrogate key was a better choice than a surrogate key.
I'm not saying that such a case does not exist, I'm just saying when you factor in the practical issues of actually developing an application that accesses the database, usually the benefits of a surrogate key start to overwhelm the theoretical purity of non-surrogate keys.
the primary key should be constant and meaningless; non-surrogate keys usually fail one or both requirements, eventually
if the key is not constant, you have a future update issue that can get quite complicated
if the key is not meaningless, then it is more likely to change, i.e. not be constant; see above
take a simple, common example: a table of Inventory items. It may be tempting to make the item number (sku number, barcode, part code, or whatever) the primary key, but then a year later all the item numbers change and you're left with a very messy update-the-whole-database problem...
EDIT: there's an additional issue that is more practical than philosophical. In many cases you're going to find a particular row somehow, then later update it or find it again (or both). With composite keys there is more data to keep track of and more contraints in the WHERE clause for the re-find or update (or delete). It is also possible that one of the key segments may have changed in the meantime!. With a surrogate key, there is always only one value to retain (the surrogate ID) and by definition it cannot change, which simplifies the situation significantly.
It sounds like the person who created the database is on the natural keys side of the great natural keys vs. surrogate keys debate.
I've never heard of any problems with btrees on ID fields, but I also haven't studied it in any great depth...
I fall on the surrogate key side: You have less repetition when using a surrogate key, because you're only repeating a single value in the other tables. Since humans rarely join tables by hand, we don't care if it's a number or not. Also, since there's only one fixed-size column to look up in the index, it's safe to assume surrogates have a faster lookup time by primary key as well.
Using 'unique (object) ID' fields simplifies joins, but you should aim to have the other (possibly composite) key still unique -- do NOT relax the not-null constraints and DO maintain the unique constraint.
If the DBMS can't handle unique integers effectively, it has big problems. However, using both a 'unique (object) ID' and the other key does use more space (for the indexes) than just the other key, and has two indexes to update on each insert operation. So it isn't a freebie -- but as long as you maintain the original key, too, then you'll be OK. If you eliminate the other key, you are breaking the design of your system; all hell will break loose eventually (and you might or might not spot that hell broke loose).