Linux Shellcode "Hello, World!"
Solution 1:
When you inject this shellcode, you don't know what is at message
:
mov ecx, message
in the injected process, it can be anything but it will not be "Hello world!\r\n"
since it is in the data section while you are dumping only the text section. You can see that your shellcode doesn't have "Hello world!\r\n"
:
"\xb8\x04\x00\x00\x00"
"\xbb\x01\x00\x00\x00"
"\xb9\x00\x00\x00\x00"
"\xba\x0f\x00\x00\x00"
"\xcd\x80\xb8\x01\x00"
"\x00\x00\xbb\x00\x00"
"\x00\x00\xcd\x80";
This is common problem in shellcode development, the way to work around it is this way:
global _start
section .text
_start:
jmp MESSAGE ; 1) lets jump to MESSAGE
GOBACK:
mov eax, 0x4
mov ebx, 0x1
pop ecx ; 3) we are poping into `ecx`, now we have the
; address of "Hello, World!\r\n"
mov edx, 0xF
int 0x80
mov eax, 0x1
mov ebx, 0x0
int 0x80
MESSAGE:
call GOBACK ; 2) we are going back, since we used `call`, that means
; the return address, which is in this case the address
; of "Hello, World!\r\n", is pushed into the stack.
db "Hello, World!", 0dh, 0ah
section .data
Now dump the text section:
$ nasm -f elf shellcode.asm
$ ld shellcode.o -o shellcode
$ ./shellcode
Hello, World!
$ objdump -d shellcode
shellcode: file format elf32-i386
Disassembly of section .text:
08048060 <_start>:
8048060: e9 1e 00 00 00 jmp 8048083 <MESSAGE>
08048065 <GOBACK>:
8048065: b8 04 00 00 00 mov $0x4,%eax
804806a: bb 01 00 00 00 mov $0x1,%ebx
804806f: 59 pop %ecx
8048070: ba 0f 00 00 00 mov $0xf,%edx
8048075: cd 80 int $0x80
8048077: b8 01 00 00 00 mov $0x1,%eax
804807c: bb 00 00 00 00 mov $0x0,%ebx
8048081: cd 80 int $0x80
08048083 <MESSAGE>:
8048083: e8 dd ff ff ff call 8048065 <GOBACK>
8048088: 48 dec %eax <-+
8048089: 65 gs |
804808a: 6c insb (%dx),%es:(%edi) |
804808b: 6c insb (%dx),%es:(%edi) |
804808c: 6f outsl %ds:(%esi),(%dx) |
804808d: 2c 20 sub $0x20,%al |
804808f: 57 push %edi |
8048090: 6f outsl %ds:(%esi),(%dx) |
8048091: 72 6c jb 80480ff <MESSAGE+0x7c> |
8048093: 64 fs |
8048094: 21 .byte 0x21 |
8048095: 0d .byte 0xd |
8048096: 0a .byte 0xa <-+
$
The lines I marked are our "Hello, World!\r\n"
string:
$ printf "\x48\x65\x6c\x6c\x6f\x2c\x20\x57\x6f\x72\x6c\x64\x21\x0d\x0a"
Hello, World!
$
So our C wrapper will be:
char code[] =
"\xe9\x1e\x00\x00\x00" // jmp (relative) <MESSAGE>
"\xb8\x04\x00\x00\x00" // mov $0x4,%eax
"\xbb\x01\x00\x00\x00" // mov $0x1,%ebx
"\x59" // pop %ecx
"\xba\x0f\x00\x00\x00" // mov $0xf,%edx
"\xcd\x80" // int $0x80
"\xb8\x01\x00\x00\x00" // mov $0x1,%eax
"\xbb\x00\x00\x00\x00" // mov $0x0,%ebx
"\xcd\x80" // int $0x80
"\xe8\xdd\xff\xff\xff" // call (relative) <GOBACK>
"Hello wolrd!\r\n"; // OR "\x48\x65\x6c\x6c\x6f\x2c\x20\x57"
// "\x6f\x72\x6c\x64\x21\x0d\x0a"
int main(int argc, char **argv)
{
(*(void(*)())code)();
return 0;
}
Lets test it, using -z execstack
to enable read-implies-exec (process-wide, despite "stack" in the name) so we can executed code in the .data
or .rodata
sections:
$ gcc -m32 test.c -z execstack -o test
$ ./test
Hello wolrd!
It works. (-m32
is necessary, too, on 64-bit systems. The int $0x80
32-bit ABI doesn't work with 64-bit addresses like .rodata
in a PIE executable. Also, the machine code was assembled for 32-bit. It happens that the same sequence of bytes would decode to equivalent instructions in 64-bit mode but that's not always the case.)
Modern GNU ld
puts .rodata
in a separate segment from .text
, so it can be non-executable. It used to be sufficient to use const char code[]
to put executable code in a page of read-only data. At least for shellcode that doesn't want to modify itself.
Solution 2:
As BSH mentioned, your shellcode does not contain the message bytes. Jumping to the MESSAGE
label and calling the GOBACK
routine just before defining the msg
byte was a good move as the address of msg would be on the top of the stack as return address which could be popped to ecx
, where the address of msg is stored.
But both yours and BSH's code has a slight limitation.
It contains NULL bytes ( \x00 )
which would be considered as end of string when dereferenced by the function pointer.
There is a smart way around this. The values you store into eax, ebx and edx
are small enough to be directly written into the lower nibbles of the respective registers in one go by accessing al, bl and dl
respectively.
The upper nibble may contain junk value so it can be xored.
b8 04 00 00 00 ------ mov $0x4,%eax
becomes
b0 04 ------ mov $0x4,%al
31 c0 ------ xor %eax,%eax
Unlike the prior instruction set, the new instruction set does not contain any NULL byte.
So, the final program looks like this :
global _start
section .text
_start:
jmp message
proc:
xor eax, eax
mov al, 0x04
xor ebx, ebx
mov bl, 0x01
pop ecx
xor edx, edx
mov dl, 0x16
int 0x80
xor eax, eax
mov al, 0x01
xor ebx, ebx
mov bl, 0x01 ; return 1
int 0x80
message:
call proc
msg db " y0u sp34k 1337 ? "
section .data
Assembling and linking :
$ nasm -f elf hello.asm -o hello.o
$ ld -s -m elf_i386 hello.o -o hello
$ ./hello
y0u sp34k 1337 ? $
Now extract the shellcode from the hello binary :
$ for i in `objdump -d hello | tr '\t' ' ' | tr ' ' '\n' | egrep '^[0-9a-f]{2}$' ` ; do echo -n "\\x$i" ; done
output:
\xeb\x19\x31\xc0\xb0\x04\x31\xdb\xb3\x01\x59\x31\xd2\xb2\x12\xcd\x80\x31\xc0\xb0\x01\x31\xdb\xb3\x01\xcd\x80\xe8\xe2\xff\xff\xff\x20\x79\x30\x75\x20\x73\x70\x33\x34\x6b\x20\x31\x33\x33\x37\x20\x3f\x20
Now we can have our driver program to launch the shellcode.
#include <stdio.h>
char shellcode[] = "\xeb\x19\x31\xc0\xb0\x04\x31\xdb"
"\xb3\x01\x59\x31\xd2\xb2\x12\xcd"
"\x80\x31\xc0\xb0\x01\x31\xdb\xb3"
"\x01\xcd\x80\xe8\xe2\xff\xff\xff"
"\x20\x79\x30\x75\x20\x73\x70\x33"
"\x34\x6b\x20\x31\x33\x33\x37\x20"
"\x3f\x20";
int main(int argc, char **argv) {
(*(void(*)())shellcode)();
return 0;
}
There are certain security features in modern compilers like NX protection which prevents execution of code in data segment or stack. So we should explicitly specify the compiler to disable these.
$ gcc -g -Wall -fno-stack-protector -z execstack launcher.c -o launcher
Now the launcher
can be invoked to launch the shellcode.
$ ./launcher
y0u sp34k 1337 ? $
For more complex shellcodes, there would be another hurdle. Modern Linux kernels have ASLR or Address Space Layout Randomization
You may need to disable this before your inject the shellcode, especially when it is through buffer overflows.
root@localhost:~# echo 0 > /proc/sys/kernel/randomize_va_space