Hamel basis for $\mathbb{R}$ over $\mathbb{Q}$ cannot be closed under scalar multiplication by $a \ne 0,1$
Here is the proof of the exercise:
Let $B$ be a Hamel basis. Then any real number $r$ can we written uniquely as $\Sigma_{x \in B} {r_x}x$ where the $r_x$ are rational numbers only finitely many of which are nonzero. The function $\alpha : r \to \Sigma_{x \in B} r_x$ is a linear transformation of vector spaces over the rational numbers. Now suppose that $a \ne 1$ and $ax \in B$ for all $x \in B$. Then $\alpha(ar)=\alpha(r)$ for all real numbers $r$. In particular, if $x \in B$ and if $r = x(a-1)^{-1}$ then $1 = \alpha(x) = \alpha([a-1]r) = \alpha(ar) - \alpha(r) = 0$. Contradiction!
Completely Revised: Let $f:\Bbb R\to\Bbb R:x\mapsto ax$, and suppose that $f[B]\subseteq B$. Since $f[B]$ is a basis for $\Bbb R$, we must have $f[B]=B$. In particular, $a^nb\in B$ for each $b\in B$ and $n\in\Bbb Z$, and it follows that $a$ must be transcendental.
Define a relation $\sim$ on $B$ by $b_0\sim b_1$ iff $b_1=a^nb_0$ for some $n\in\Bbb Z$; $\sim$ is easily seen to be an equivalence relation. Let $T\subseteq B$ contain exactly one representative of each $\sim$-equivalence class. Fix $t\in T$; there are $m\in\Bbb Z^+$ and for $k=1,\dots,m$ distinct $t_k\in T$ and Laurent polynomials $p_k$ with non-zero rational coefficients such that
$$\frac{t}{a+1}=\sum_{k=1}^mp_k(a)t_k\;,$$
and hence $$t-\sum_{k=1}^m(a+1)p_k(a)t_k=0\;.$$
But this implies that $m=1$, $t_1=t$, and $(a+1)p_1(a)=1$, making $a$ algebraic, which is impossible. Thus, $f[B]\nsubseteq B$.