How to calculate the 95% confidence interval for the slope in a linear regression model in R
Let's fit the model:
> library(ISwR)
> fit <- lm(metabolic.rate ~ body.weight, rmr)
> summary(fit)
Call:
lm(formula = metabolic.rate ~ body.weight, data = rmr)
Residuals:
Min 1Q Median 3Q Max
-245.74 -113.99 -32.05 104.96 484.81
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 811.2267 76.9755 10.539 2.29e-13 ***
body.weight 7.0595 0.9776 7.221 7.03e-09 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 157.9 on 42 degrees of freedom
Multiple R-squared: 0.5539, Adjusted R-squared: 0.5433
F-statistic: 52.15 on 1 and 42 DF, p-value: 7.025e-09
The 95% confidence interval for the slope is the estimated coefficient (7.0595) ± two standard errors (0.9776).
This can be computed using confint
:
> confint(fit, 'body.weight', level=0.95)
2.5 % 97.5 %
body.weight 5.086656 9.0324