Python Weighted Random [duplicate]
Solution 1:
Your algorithm is correct, how about something more elegant:
import random
my_list = ['A'] * 5 + ['B'] * 5 + ['C'] * 90
random.choice(my_list)
Solution 2:
that's fine. more generally, you can define something like:
from collections import Counter
from random import randint
def weighted_random(pairs):
total = sum(pair[0] for pair in pairs)
r = randint(1, total)
for (weight, value) in pairs:
r -= weight
if r <= 0: return value
results = Counter(weighted_random([(1,'a'),(1,'b'),(18,'c')])
for _ in range(20000))
print(results)
which gives
Counter({'c': 17954, 'b': 1039, 'a': 1007})
which is as close to 18:1:1 as you can expect.
Solution 3:
If you want to use weighted random and not percentile random, you can make your own Randomizer class:
import random
class WeightedRandomizer:
def __init__ (self, weights):
self.__max = .0
self.__weights = []
for value, weight in weights.items ():
self.__max += weight
self.__weights.append ( (self.__max, value) )
def random (self):
r = random.random () * self.__max
for ceil, value in self.__weights:
if ceil > r: return value
w = {'A': 1.0, 'B': 1.0, 'C': 18.0}
#or w = {'A': 5, 'B': 5, 'C': 90}
#or w = {'A': 1.0/18, 'B': 1.0/18, 'C': 1.0}
#or or or
wr = WeightedRandomizer (w)
results = {'A': 0, 'B': 0, 'C': 0}
for i in range (10000):
results [wr.random () ] += 1
print ('After 10000 rounds the distribution is:')
print (results)