UTF8 to/from wide char conversion in STL

I've asked this question 5 years ago. This thread was very helpful for me back then, I came to a conclusion, then I moved on with my project. It is funny that I needed something similar recently, totally unrelated to that project from the past. As I was researching for possible solutions, I stumbled upon my own question :)

The solution I chose now is based on C++11. The boost libraries that Constantin mentions in his answer are now part of the standard. If we replace std::wstring with the new string type std::u16string, then the conversions will look like this:

UTF-8 to UTF-16

std::string source;
...
std::wstring_convert<std::codecvt_utf8_utf16<char16_t>,char16_t> convert;
std::u16string dest = convert.from_bytes(source);    

UTF-16 to UTF-8

std::u16string source;
...
std::wstring_convert<std::codecvt_utf8_utf16<char16_t>,char16_t> convert;
std::string dest = convert.to_bytes(source);    

As seen from the other answers, there are multiple approaches to the problem. That's why I refrain from picking an accepted answer.


The problem definition explicitly states that the 8-bit character encoding is UTF-8. That makes this a trivial problem; all it requires is a little bit-twiddling to convert from one UTF spec to another.

Just look at the encodings on these Wikipedia pages for UTF-8, UTF-16, and UTF-32.

The principle is simple - go through the input and assemble a 32-bit Unicode code point according to one UTF spec, then emit the code point according to the other spec. The individual code points need no translation, as would be required with any other character encoding; that's what makes this a simple problem.

Here's a quick implementation of wchar_t to UTF-8 conversion and vice versa. It assumes that the input is already properly encoded - the old saying "Garbage in, garbage out" applies here. I believe that verifying the encoding is best done as a separate step.

std::string wchar_to_UTF8(const wchar_t * in)
{
    std::string out;
    unsigned int codepoint = 0;
    for (in;  *in != 0;  ++in)
    {
        if (*in >= 0xd800 && *in <= 0xdbff)
            codepoint = ((*in - 0xd800) << 10) + 0x10000;
        else
        {
            if (*in >= 0xdc00 && *in <= 0xdfff)
                codepoint |= *in - 0xdc00;
            else
                codepoint = *in;

            if (codepoint <= 0x7f)
                out.append(1, static_cast<char>(codepoint));
            else if (codepoint <= 0x7ff)
            {
                out.append(1, static_cast<char>(0xc0 | ((codepoint >> 6) & 0x1f)));
                out.append(1, static_cast<char>(0x80 | (codepoint & 0x3f)));
            }
            else if (codepoint <= 0xffff)
            {
                out.append(1, static_cast<char>(0xe0 | ((codepoint >> 12) & 0x0f)));
                out.append(1, static_cast<char>(0x80 | ((codepoint >> 6) & 0x3f)));
                out.append(1, static_cast<char>(0x80 | (codepoint & 0x3f)));
            }
            else
            {
                out.append(1, static_cast<char>(0xf0 | ((codepoint >> 18) & 0x07)));
                out.append(1, static_cast<char>(0x80 | ((codepoint >> 12) & 0x3f)));
                out.append(1, static_cast<char>(0x80 | ((codepoint >> 6) & 0x3f)));
                out.append(1, static_cast<char>(0x80 | (codepoint & 0x3f)));
            }
            codepoint = 0;
        }
    }
    return out;
}

The above code works for both UTF-16 and UTF-32 input, simply because the range d800 through dfff are invalid code points; they indicate that you're decoding UTF-16. If you know that wchar_t is 32 bits then you could remove some code to optimize the function.

std::wstring UTF8_to_wchar(const char * in)
{
    std::wstring out;
    unsigned int codepoint;
    while (*in != 0)
    {
        unsigned char ch = static_cast<unsigned char>(*in);
        if (ch <= 0x7f)
            codepoint = ch;
        else if (ch <= 0xbf)
            codepoint = (codepoint << 6) | (ch & 0x3f);
        else if (ch <= 0xdf)
            codepoint = ch & 0x1f;
        else if (ch <= 0xef)
            codepoint = ch & 0x0f;
        else
            codepoint = ch & 0x07;
        ++in;
        if (((*in & 0xc0) != 0x80) && (codepoint <= 0x10ffff))
        {
            if (sizeof(wchar_t) > 2)
                out.append(1, static_cast<wchar_t>(codepoint));
            else if (codepoint > 0xffff)
            {
                out.append(1, static_cast<wchar_t>(0xd800 + (codepoint >> 10)));
                out.append(1, static_cast<wchar_t>(0xdc00 + (codepoint & 0x03ff)));
            }
            else if (codepoint < 0xd800 || codepoint >= 0xe000)
                out.append(1, static_cast<wchar_t>(codepoint));
        }
    }
    return out;
}

Again if you know that wchar_t is 32 bits you could remove some code from this function, but in this case it shouldn't make any difference. The expression sizeof(wchar_t) > 2 is known at compile time, so any decent compiler will recognize dead code and remove it.


UTF8-CPP: UTF-8 with C++ in a Portable Way


You can extract utf8_codecvt_facet from Boost serialization library.

Their usage example:

  typedef wchar_t ucs4_t;

  std::locale old_locale;
  std::locale utf8_locale(old_locale,new utf8_codecvt_facet<ucs4_t>);

  // Set a New global locale
  std::locale::global(utf8_locale);

  // Send the UCS-4 data out, converting to UTF-8
  {
    std::wofstream ofs("data.ucd");
    ofs.imbue(utf8_locale);
    std::copy(ucs4_data.begin(),ucs4_data.end(),
          std::ostream_iterator<ucs4_t,ucs4_t>(ofs));
  }

  // Read the UTF-8 data back in, converting to UCS-4 on the way in
  std::vector<ucs4_t> from_file;
  {
    std::wifstream ifs("data.ucd");
    ifs.imbue(utf8_locale);
    ucs4_t item = 0;
    while (ifs >> item) from_file.push_back(item);
  }

Look for utf8_codecvt_facet.hpp and utf8_codecvt_facet.cpp files in boost sources.