How to generate random colors in matplotlib?
I'm calling scatter inside a loop and want each plot in a different color.
Based on that, and on your answer: It seems to me that you actually want n
distinct colors for your datasets; you want to map the integer indices 0, 1, ..., n-1
to distinct RGB colors. Something like:
Here is the function to do it:
import matplotlib.pyplot as plt
def get_cmap(n, name='hsv'):
'''Returns a function that maps each index in 0, 1, ..., n-1 to a distinct
RGB color; the keyword argument name must be a standard mpl colormap name.'''
return plt.cm.get_cmap(name, n)
Usage in your pseudo-code snippet in the question:
cmap = get_cmap(len(data))
for i, (X, Y) in enumerate(data):
scatter(X, Y, c=cmap(i))
I generated the figure in my answer with the following code:
import matplotlib.pyplot as plt
def get_cmap(n, name='hsv'):
'''Returns a function that maps each index in 0, 1, ..., n-1 to a distinct
RGB color; the keyword argument name must be a standard mpl colormap name.'''
return plt.cm.get_cmap(name, n)
def main():
N = 30
fig=plt.figure()
ax=fig.add_subplot(111)
plt.axis('scaled')
ax.set_xlim([ 0, N])
ax.set_ylim([-0.5, 0.5])
cmap = get_cmap(N)
for i in range(N):
rect = plt.Rectangle((i, -0.5), 1, 1, facecolor=cmap(i))
ax.add_artist(rect)
ax.set_yticks([])
plt.show()
if __name__=='__main__':
main()
Tested with both Python 2.7 & matplotlib 1.5, and with Python 3.5 & matplotlib 2.0. It works as expected.
for X,Y in data:
scatter(X, Y, c=numpy.random.rand(3,))
elaborating @john-mee 's answer, if you have arbitrarily long data but don't need strictly unique colors:
for python 2:
from itertools import cycle
cycol = cycle('bgrcmk')
for X,Y in data:
scatter(X, Y, c=cycol.next())
for python 3:
from itertools import cycle
cycol = cycle('bgrcmk')
for X,Y in data:
scatter(X, Y, c=next(cycol))
this has the advantage that the colors are easy to control and that it's short.
For some time I was really annoyed by the fact that matplotlib doesn't generate colormaps with random colors, as this is a common need for segmentation and clustering tasks.
By just generating random colors we may end with some that are too bright or too dark, making visualization difficult. Also, usually we need the first or last color to be black, representing the background or outliers. So I've wrote a small function for my everyday work
Here's the behavior of it:
new_cmap = rand_cmap(100, type='bright', first_color_black=True, last_color_black=False, verbose=True)
Than you just use new_cmap as your colormap on matplotlib:
ax.scatter(X,Y, c=label, cmap=new_cmap, vmin=0, vmax=num_labels)
The code is here:
def rand_cmap(nlabels, type='bright', first_color_black=True, last_color_black=False, verbose=True):
"""
Creates a random colormap to be used together with matplotlib. Useful for segmentation tasks
:param nlabels: Number of labels (size of colormap)
:param type: 'bright' for strong colors, 'soft' for pastel colors
:param first_color_black: Option to use first color as black, True or False
:param last_color_black: Option to use last color as black, True or False
:param verbose: Prints the number of labels and shows the colormap. True or False
:return: colormap for matplotlib
"""
from matplotlib.colors import LinearSegmentedColormap
import colorsys
import numpy as np
if type not in ('bright', 'soft'):
print ('Please choose "bright" or "soft" for type')
return
if verbose:
print('Number of labels: ' + str(nlabels))
# Generate color map for bright colors, based on hsv
if type == 'bright':
randHSVcolors = [(np.random.uniform(low=0.0, high=1),
np.random.uniform(low=0.2, high=1),
np.random.uniform(low=0.9, high=1)) for i in xrange(nlabels)]
# Convert HSV list to RGB
randRGBcolors = []
for HSVcolor in randHSVcolors:
randRGBcolors.append(colorsys.hsv_to_rgb(HSVcolor[0], HSVcolor[1], HSVcolor[2]))
if first_color_black:
randRGBcolors[0] = [0, 0, 0]
if last_color_black:
randRGBcolors[-1] = [0, 0, 0]
random_colormap = LinearSegmentedColormap.from_list('new_map', randRGBcolors, N=nlabels)
# Generate soft pastel colors, by limiting the RGB spectrum
if type == 'soft':
low = 0.6
high = 0.95
randRGBcolors = [(np.random.uniform(low=low, high=high),
np.random.uniform(low=low, high=high),
np.random.uniform(low=low, high=high)) for i in xrange(nlabels)]
if first_color_black:
randRGBcolors[0] = [0, 0, 0]
if last_color_black:
randRGBcolors[-1] = [0, 0, 0]
random_colormap = LinearSegmentedColormap.from_list('new_map', randRGBcolors, N=nlabels)
# Display colorbar
if verbose:
from matplotlib import colors, colorbar
from matplotlib import pyplot as plt
fig, ax = plt.subplots(1, 1, figsize=(15, 0.5))
bounds = np.linspace(0, nlabels, nlabels + 1)
norm = colors.BoundaryNorm(bounds, nlabels)
cb = colorbar.ColorbarBase(ax, cmap=random_colormap, norm=norm, spacing='proportional', ticks=None,
boundaries=bounds, format='%1i', orientation=u'horizontal')
return random_colormap
It's also on github: https://github.com/delestro/rand_cmap
When less than 9 datasets:
colors = "bgrcmykw"
color_index = 0
for X,Y in data:
scatter(X,Y, c=colors[color_index])
color_index += 1