Performance ConcurrentHashmap vs HashMap
Solution 1:
I was really surprised to find this topic to be so old and yet no one has yet provided any tests regarding the case. Using ScalaMeter
I have created tests of add
, get
and remove
for both HashMap
and ConcurrentHashMap
in two scenarios:
- using single thread
- using as many threads as I have cores available. Note that because
HashMap
is not thread-safe, I simply created separateHashMap
for each thread, but used one, sharedConcurrentHashMap
.
Code is available on my repo.
The results are as follows:
- X axis (size) presents number of elements written to the map(s)
- Y axis (value) presents time in milliseconds
The summary
If you want to operate on your data as fast as possible, use all the threads available. That seems obvious, each thread has 1/nth of the full work to do.
If you choose a single thread access use
HashMap
, it is simply faster. Foradd
method it is even as much as 3x more efficient. Onlyget
is faster onConcurrentHashMap
, but not much.When operating on
ConcurrentHashMap
with many threads it is similarly effective to operating on separateHashMaps
for each thread. So there is no need to partition your data in different structures.
To sum up, the performance for ConcurrentHashMap
is worse when you use with single thread, but adding more threads to do the work will definitely speed-up the process.
Testing platform
AMD FX6100, 16GB Ram
Xubuntu 16.04, Oracle JDK 8 update 91, Scala 2.11.8
Solution 2:
Thread safety is a complex question. If you want to make an object thread safe, do it consciously, and document that choice. People who use your class will thank you if it is thread safe when it simplifies their usage, but they will curse you if an object that once was thread safe becomes not so in a future version. Thread safety, while really nice, is not just for Christmas!
So now to your question:
ConcurrentHashMap (at least in Sun's current implementation) works by dividing the underlying map into a number of separate buckets. Getting an element does not require any locking per se, but it does use atomic/volatile operations, which implies a memory barrier (potentially very costly, and interfering with other possible optimisations).
Even if all the overhead of atomic operations can be eliminated by the JIT compiler in a single-threaded case, there is still the overhead of deciding which of the buckets to look in - admittedly this is a relatively quick calculation, but nevertheless, it is impossible to eliminate.
As for deciding which implementation to use, the choice is probably simple.
If this is a static field, you almost certainly want to use ConcurrentHashMap, unless testing shows this is a real performance killer. Your class has different thread safety expectations from the instances of that class.
If this is a local variable, then chances are a HashMap is sufficient - unless you know that references to the object can leak out to another thread. By coding to the Map interface, you allow yourself to change it easily later if you discover a problem.
If this is an instance field, and the class hasn't been designed to be thread safe, then document it as not thread safe, and use a HashMap.
If you know that this instance field is the only reason the class isn't thread safe, and are willing to live with the restrictions that promising thread safety implies, then use ConcurrentHashMap, unless testing shows significant performance implications. In that case, you might consider allowing a user of the class to choose a thread safe version of the object somehow, perhaps by using a different factory method.
In either case, document the class as being thread safe (or conditionally thread safe) so people who use your class know they can use objects across multiple threads, and people who edit your class know that they must maintain thread safety in future.
Solution 3:
I would recommend you measure it, since (for one reason) there may be some dependence on the hashing distribution of the particular objects you're storing.
Solution 4:
The standard hashmap provides no concurrency protection whereas the concurrent hashmap does. Before it was available, you could wrap the hashmap to get thread safe access but this was coarse grain locking and meant all concurrent access got serialised which could really impact performance.
The concurrent hashmap uses lock stripping and only locks items that affected by a particular lock. If you're running on a modern vm such as hotspot, the vm will try and use lock biasing, coarsaning and ellision if possible so you'll only pay the penalty for the locks when you actually need it.
In summary, if your map is going to be accesaed by concurrent threads and you need to guarantee a consistent view of it's state, use the concurrent hashmap.