Multiple variables in SciPy's optimize.minimize

Solution 1:

Pack the multiple variables into a single array:

import scipy.optimize as optimize

def f(params):
    # print(params)  # <-- you'll see that params is a NumPy array
    a, b, c = params # <-- for readability you may wish to assign names to the component variables
    return a**2 + b**2 + c**2

initial_guess = [1, 1, 1]
result = optimize.minimize(f, initial_guess)
if result.success:
    fitted_params = result.x
    print(fitted_params)
else:
    raise ValueError(result.message)

yields

[ -1.66705302e-08  -1.66705302e-08  -1.66705302e-08]