Draw different color for nodes in networkx based on their node value
I have a large graph of nodes and directed edges. Furthermore, I have an additional list of values assigned to each node.
I now want to change the color of each node according to their node value. So e.g., drawing nodes with a very high value red and those with a low value blue (similar to a heatmap). Is this somehow easily possible to achieve? If not with networkx, I am also open for other libraries in Python.
Solution 1:
import networkx as nx
import numpy as np
import matplotlib.pyplot as plt
G = nx.Graph()
G.add_edges_from(
[('A', 'B'), ('A', 'C'), ('D', 'B'), ('E', 'C'), ('E', 'F'),
('B', 'H'), ('B', 'G'), ('B', 'F'), ('C', 'G')])
val_map = {'A': 1.0,
'D': 0.5714285714285714,
'H': 0.0}
values = [val_map.get(node, 0.25) for node in G.nodes()]
nx.draw(G, cmap=plt.get_cmap('viridis'), node_color=values, with_labels=True, font_color='white')
plt.show()
yields
The numbers in values
are associated with the nodes in G.nodes()
.
That is to say, the first number in values
is associated with the first node in G.nodes()
, and similarly for the second, and so on.
Solution 2:
For the general case, in which we have a list of values indicating some attribute of a node, and we want to assign a colour to the given node which gives a sense of scale of that attribute (reds to blues for instance), here's one approach:
import matplotlib as mpl
from matplotlib import pyplot as plt
from pylab import rcParams
import networkx as nx
G = nx.Graph()
G.add_edges_from([('A', 'D'), ('Z', 'D'), ('F', 'J'), ('A', 'E'), ('E', 'J'),('Z', 'K'), ('B', 'A'), ('B', 'D'), ('A', 'J'), ('Z', 'F'),('Z', 'D'), ('A', 'B'), ('J', 'D'), ('J', 'E'), ('Z', 'J'),('K', 'J'), ('B', 'F'), ('B', 'J'), ('A', 'Z'), ('Z', 'E'),('C', 'Z'), ('C', 'A')])
Say that we have the following dictionary mapping a each node to a given value:
color_lookup = {k:v for v, k in enumerate(sorted(set(G.nodes())))}
# {'A': 0, 'B': 1, 'C': 2, 'D': 3, 'E': 4, 'F': 5, 'J': 6, 'K': 7, 'Z': 8}
What we could do is to use mpl.colors.Normalize
to normalize the values in color_lookup
to the range [0,1]
based on the minimum and maximum values that the nodes take, and then matplotlib.cm.ScalarMappable
to map the normalized values to colours in a colourmap, here I'll be using mpl.cm.coolwarm
:
low, *_, high = sorted(color_lookup.values())
norm = mpl.colors.Normalize(vmin=low, vmax=high, clip=True)
mapper = mpl.cm.ScalarMappable(norm=norm, cmap=mpl.cm.coolwarm)
rcParams['figure.figsize'] = 12, 7
nx.draw(G,
nodelist=color_lookup,
node_size=1000,
node_color=[mapper.to_rgba(i)
for i in color_lookup.values()],
with_labels=True)
plt.show()
For another colour map we'd just have to change the cmap
parameter in mpl.cm.ScalarMappable
:
mapper = mpl.cm.ScalarMappable(norm=norm, cmap=mpl.cm.summer)
nx.draw(G,
nodelist=color_lookup,
node_size=1000,
node_color=[mapper.to_rgba(i)
for i in color_lookup.values()],
with_labels=True)
plt.show()
Where we'd get:
Similarly, we could set the colour of a node based on the degree
of a node by defining a dictionary mapping all nodes to their corresponding degree, and taking the same steps as above:
d = dict(G.degree)
# {'A': 6, 'D': 4, 'Z': 7, 'F': 3, 'J': 7, 'E': 3, 'K': 2, 'B': 4, 'C': 2}
low, *_, high = sorted(d.values())
norm = mpl.colors.Normalize(vmin=low, vmax=high, clip=True)
mapper = mpl.cm.ScalarMappable(norm=norm, cmap=mpl.cm.coolwarm)
nx.draw(G,
nodelist=d,
node_size=1000,
node_color=[mapper.to_rgba(i)
for i in d.values()],
with_labels=True,
font_color='white')
plt.show()