Crop black edges with OpenCV
I am not sure whether all your images are like this. But for this image, below is a simple python-opencv code to crop it.
first import libraries :
import cv2
import numpy as np
Read the image, convert it into grayscale, and make in binary image for threshold value of 1.
img = cv2.imread('sofwin.png')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
_,thresh = cv2.threshold(gray,1,255,cv2.THRESH_BINARY)
Now find contours in it. There will be only one object, so find bounding rectangle for it.
contours,hierarchy = cv2.findContours(thresh,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
cnt = contours[0]
x,y,w,h = cv2.boundingRect(cnt)
Now crop the image, and save it into another file.
crop = img[y:y+h,x:x+w]
cv2.imwrite('sofwinres.png',crop)
Below is the result :
import numpy as np
def autocrop(image, threshold=0):
"""Crops any edges below or equal to threshold
Crops blank image to 1x1.
Returns cropped image.
"""
if len(image.shape) == 3:
flatImage = np.max(image, 2)
else:
flatImage = image
assert len(flatImage.shape) == 2
rows = np.where(np.max(flatImage, 0) > threshold)[0]
if rows.size:
cols = np.where(np.max(flatImage, 1) > threshold)[0]
image = image[cols[0]: cols[-1] + 1, rows[0]: rows[-1] + 1]
else:
image = image[:1, :1]
return image
I thought this answer is much more succinct:
def crop(image):
y_nonzero, x_nonzero, _ = np.nonzero(image)
return image[np.min(y_nonzero):np.max(y_nonzero), np.min(x_nonzero):np.max(x_nonzero)]