Why many refer to Cassandra as a Column oriented database?
- If you take a look at the Readme file at Apache Cassandra git repo, it says that,
Cassandra is a partitioned row store. Rows are organized into tables with a required primary key.
Partitioning means that Cassandra can distribute your data across multiple machines in an application-transparent matter. Cassandra will automatically repartition as machines are added and removed from the cluster.
Row store means that like relational databases, Cassandra organizes data by rows and columns.
-
Column oriented or columnar databases are stored on disk column wise.
e.g: Table
Bonuses
tableID Last First Bonus 1 Doe John 8000 2 Smith Jane 4000 3 Beck Sam 1000
-
In a row-oriented database management system, the data would be stored like this:
1,Doe,John,8000;2,Smith,Jane,4000;3,Beck,Sam,1000;
-
In a column-oriented database management system, the data would be stored like this:
1,2,3;Doe,Smith,Beck;John,Jane,Sam;8000,4000,1000;
-
Cassandra is basically a column-family store
-
Cassandra would store the above data as,
"Bonuses" : {
row1 : { "ID":1, "Last":"Doe", "First":"John", "Bonus":8000},
row2 : { "ID":2, "Last":"Smith", "First":"Jane", "Bonus":4000}
...
}
-
Also, the number of columns in each row doesn't have to be the same. One row can have 100 columns and the next row can have only 1 column.
-
Read this for more details.
Yes, the "column-oriented" terminology is a bit confusing.
The model in Cassandra is that rows contain columns. To access the smallest unit of data (a column) you have to specify first the row name (key), then the column name.
So in a columnfamily called Fruit
you could have a structure like the following example (with 2 rows), where the fruit types are the row keys, and the columns each have a name and value.
apple -> colour weight price variety
"red" 100 40 "Cox"
orange -> colour weight price origin
"orange" 120 50 "Spain"
One difference from a table-based relational database is that one can omit columns (orange has no variety), or add arbitrary columns (orange has origin) at any time. You can still imagine the data above as a table, albeit a sparse one where many values might be empty.
However, a "column-oriented" model can also be used for lists and time series, where every column name is unique (and here we have just one row, but we could have thousands or millions of columns):
temperature -> 2012-09-01 2012-09-02 2012-09-03 ...
40 41 39 ...
which is quite different from a relational model, where one would have to model the entries of a time series as rows
not columns
. This type of usage is often referred to as "wide rows".
You both make good points and it can be confusing. In the example where
apple -> colour weight price variety
"red" 100 40 "Cox"
apple is the key value and the column is the data, which contains all 4 data items. From what was described it sounds like all 4 data items are stored together as a single object then parsed by the application to pull just the value required. Therefore from an IO perspective I need to read the entire object. IMHO this is inherently row (or object) based not column based.
Column based storage became popular for warehousing, because it offers extreme compression and reduced IO for full table scans (DW) but at the cost of increased IO for OLTP when you needed to pull every column (select *). Most queries don't need every column and due to compression the IO can be greatly reduced for full table scans for just a few columns. Let me provide an example
apple -> colour weight price variety
"red" 100 40 "Cox"
grape -> colour weight price variety
"red" 100 40 "Cox"
We have two different fruits, but both have a colour = red. If we store colour in a separate disk page (block) from weight, price and variety so the only thing stored is colour, then when we compress the page we can achieve extreme compression due to a lot of de-duplication. Instead of storing 100 rows (hypothetically) in a page, we can store 10,000 colour's. Now to read everything with the colour red it might be 1 IO instead of thousands of IO's which is really good for warehousing and analytics, but bad for OLTP if I need to update the entire row since the row might have hundreds of columns and a single update (or insert) could require hundreds of IO's.
Unless I'm missing something I wouldn't call this columnar based, I'd call it object based. It's still not clear on how objects are arranged on disk. Are multiple objects placed into the same disk page? Is there any way of ensuring objects with the same meta data go together? To the point that one fruit might contain different data than another fruit since its just meta data or xml or whatever you want to store in the object itself, is there a way to ensure certain matching fruit types are stored together to increase efficiency?
Larry
The most unambiguous term I have come across is wide-column store.
It is a kind of two-dimensional key-value store, where you use a row key and a column key to access data.
The main difference between this model and the relational ones (both row-oriented and column-oriented) is that the column information is part of the data.
This implies data can be sparse. That means different rows don't need to share the same column names nor number of columns. This enables semi-structured data or schema free tables.
You can think of wide-column stores as tables that can hold an unlimited number of columns, and thus are wide.
Here's a couple of links to back this up:
- This mongodb article
- This Datastax article mentions it too, although it classifies Cassandra as a key-value store.
- This db-engines article
- This 2013 article
- Wikipedia
Column Family does not mean it is column-oriented. Cassandra is column family but not column-oriented. It stores the row with all its column families together.
Hbase is column family as well as stores column families in column-oriented fashion. Different column families are stored separately in a node or they can even reside in different node.