Solution 1:

Since $\Bigl\lvert\sum\sin(n x)\Bigr\rvert\leq M$ for $M<\infty$ and $\Bigl\{\frac{1}{\log(n)}\Bigr\}\to 0$ monotonically, by Dirichlet's test, $\sum_{n=2}^{\infty}\frac{\sin(nx)}{\log(n)}$ converges.


If $\sum_{n=2}^{\infty}\frac{\sin(nx)}{\log(n)}$ is a Fourier series, by Parseval's theorem, there exist a Riemann integrable function $f$ such that $$ \int_{-\pi}^{\pi}\lvert f(x)\rvert^2dx=2\pi\sum_{n=2}^{\infty}\frac{1}{\log^2\lvert n\rvert} $$

Theorem:

Suppose $a_1\geq a_2\geq\cdots\geq 0$. Then the series $\sum a_n$ converges iff $\sum 2^ka_{2^k}$ converges. $$ \sum_{n=2}^{\infty}\frac{2^k}{k^2\log^2(2)}\geq\sum_{n=2}^{\infty}\frac{1}{k}=\infty $$


Therefore, by Cauchy's condensation test, the $\sum_{n=2}^{\infty}\frac{1}{\log^2\lvert n\rvert}$ does not converge which contradicts Parseval's theorem. Thus, $\sum_{n=2}^{\infty}\frac{\sin(nx)}{\log(n)}$ is not a Fourier series.