Four complex numbers $z_1,z_2,z_3,z_4$ lie on a generalized circle if and only if they have a real cross ratio $[z_1,z_2,z_3,z_4]\in\mathbb{R}$
We will show (1) if $z_1,z_2,z_3,z_4$ lie on a generalized circle, then $[z_1,z_2,z_3,z_4]\in\mathbb R$, and (2) if $[z_1,z_2,z_3,z_4]\in\mathbb R$, then $z_1,z_2,z_3,z_4$ lie on a generalized circle.
- First, suppose $z_1,z_2,z_3,z_4$ lie on a generalized circle. We know that, given three real numbers $x_1,x_2,x_3 \in \mathbb{R}$, there exists a Mobius transformation \begin{equation*} F=F_{x_1,x_2,x_3}^{-1} \circ F_{z_1,z_2,z_3} \end{equation*} such that $F(z_i)=x_i$, $i=1,2,3$. Also, since Mobius transformations map generalized circles to generalized circles, we know that $z_4$ is also mapped to some $x_4 \in \mathbb{R}$. Therefore, since $x_1,x_2,x_3,x_4 \in \mathbb{R}$, then their cross ratio $[x_1,x_2,x_3,x_4]=\frac{x_1-x_3}{x_2-x_3}\cdot\frac{x_2-x_4}{x_1-x_4} \in \mathbb{R}$. Therefore, since the cross ratio is invariant under Mobius transformation, we have \begin{align*} [z_1,z_2,z_3,z_4] &=[F(z_1),F(z_2),F(z_3),F(z_4)] \\ &=[x_1,x_2,x_3,x_4] \\ &=\frac{x_1-x_3}{x_2-x_3}\cdot\frac{x_2-x_4}{x_1-x_4} \\ &\in \mathbb{R} \end{align*}
- Next, suppose $[z_1,z_2,z_3,z_4] \in \mathbb{R}$. Let \begin{equation*} F=F_{x_1,x_2,x_3}^{-1} \circ F_{z_1,z_2,z_3} \end{equation*} be the Mobius transformation which sends $F(z_i)=x_i$, $i=1,2,3$, and let $z_4'=F(z_4)$. Since the cross ratio is invariant under Mobius transformation, we know that \begin{equation*} [z_1,z_2,z_3,z_4]=[x_1,x_2,x_3,z_4'] \end{equation*} Therefore the cross ratio $[x_1,x_2,x_3,z_4']$ is also a real number, which implies that $z_4'$ is a real number as well. Now consider $F^{-1}$, which is also a Mobius transformation. Since $x_1,x_2,x_3,z_4'$ lie on a generalized circle (the real line), and since a Mobius transformation maps generalized circles to generalized circles, then $z_1,z_2,z_3,z_4 \in F^{-1}(\mathbb{R})$ belong to a generalized circle.