python multithreading wait till all threads finished

Solution 1:

Put the threads in a list and then use the Join method

 threads = []

 t = Thread(...)
 threads.append(t)

 ...repeat as often as necessary...

 # Start all threads
 for x in threads:
     x.start()

 # Wait for all of them to finish
 for x in threads:
     x.join()

Solution 2:

You need to use join method of Thread object in the end of the script.

t1 = Thread(target=call_script, args=(scriptA + argumentsA))
t2 = Thread(target=call_script, args=(scriptA + argumentsB))
t3 = Thread(target=call_script, args=(scriptA + argumentsC))

t1.start()
t2.start()
t3.start()

t1.join()
t2.join()
t3.join()

Thus the main thread will wait till t1, t2 and t3 finish execution.

Solution 3:

In Python3, since Python 3.2 there is a new approach to reach the same result, that I personally prefer to the traditional thread creation/start/join, package concurrent.futures: https://docs.python.org/3/library/concurrent.futures.html

Using a ThreadPoolExecutor the code would be:

from concurrent.futures.thread import ThreadPoolExecutor
import time

def call_script(ordinal, arg):
    print('Thread', ordinal, 'argument:', arg)
    time.sleep(2)
    print('Thread', ordinal, 'Finished')

args = ['argumentsA', 'argumentsB', 'argumentsC']

with ThreadPoolExecutor(max_workers=2) as executor:
    ordinal = 1
    for arg in args:
        executor.submit(call_script, ordinal, arg)
        ordinal += 1
print('All tasks has been finished')

The output of the previous code is something like:

Thread 1 argument: argumentsA
Thread 2 argument: argumentsB
Thread 1 Finished
Thread 2 Finished
Thread 3 argument: argumentsC
Thread 3 Finished
All tasks has been finished

One of the advantages is that you can control the throughput setting the max concurrent workers.

Solution 4:

I prefer using list comprehension based on an input list:

inputs = [scriptA + argumentsA, scriptA + argumentsB, ...]
threads = [Thread(target=call_script, args=(i)) for i in inputs]
[t.start() for t in threads]
[t.join() for t in threads]