How can I split a column of tuples in a Pandas dataframe?

Solution 1:

You can do this by doing pd.DataFrame(col.tolist()) on that column:

In [2]: df = pd.DataFrame({'a':[1,2], 'b':[(1,2), (3,4)]})

In [3]: df
Out[3]:
   a       b
0  1  (1, 2)
1  2  (3, 4)

In [4]: df['b'].tolist()
Out[4]: [(1, 2), (3, 4)]

In [5]: pd.DataFrame(df['b'].tolist(), index=df.index)
Out[5]:
   0  1
0  1  2
1  3  4

In [6]: df[['b1', 'b2']] = pd.DataFrame(df['b'].tolist(), index=df.index)

In [7]: df
Out[7]:
   a       b  b1  b2
0  1  (1, 2)   1   2
1  2  (3, 4)   3   4

Note: in an earlier version, this answer recommended to use df['b'].apply(pd.Series) instead of pd.DataFrame(df['b'].tolist(), index=df.index). That works as well (because it makes a Series of each tuple, which is then seen as a row of a dataframe), but it is slower / uses more memory than the tolist version, as noted by the other answers here (thanks to denfromufa).

Solution 2:

The str accessor that is available to pandas.Series objects of dtype == object is actually an iterable.

Assume a pandas.DataFrame df:

df = pd.DataFrame(dict(col=[*zip('abcdefghij', range(10, 101, 10))]))

df

        col
0   (a, 10)
1   (b, 20)
2   (c, 30)
3   (d, 40)
4   (e, 50)
5   (f, 60)
6   (g, 70)
7   (h, 80)
8   (i, 90)
9  (j, 100)

We can test if it is an iterable:

from collections import Iterable

isinstance(df.col.str, Iterable)

True

We can then assign from it like we do other iterables:

var0, var1 = 'xy'
print(var0, var1)

x y

Simplest solution

So in one line we can assign both columns:

df['a'], df['b'] = df.col.str

df

        col  a    b
0   (a, 10)  a   10
1   (b, 20)  b   20
2   (c, 30)  c   30
3   (d, 40)  d   40
4   (e, 50)  e   50
5   (f, 60)  f   60
6   (g, 70)  g   70
7   (h, 80)  h   80
8   (i, 90)  i   90
9  (j, 100)  j  100

Faster solution

Only slightly more complicated, we can use zip to create a similar iterable:

df['c'], df['d'] = zip(*df.col)

df

        col  a    b  c    d
0   (a, 10)  a   10  a   10
1   (b, 20)  b   20  b   20
2   (c, 30)  c   30  c   30
3   (d, 40)  d   40  d   40
4   (e, 50)  e   50  e   50
5   (f, 60)  f   60  f   60
6   (g, 70)  g   70  g   70
7   (h, 80)  h   80  h   80
8   (i, 90)  i   90  i   90
9  (j, 100)  j  100  j  100

Inline

Meaning, don't mutate existing df.

This works because assign takes keyword arguments where the keywords are the new (or existing) column names and the values will be the values of the new column. You can use a dictionary and unpack it with ** and have it act as the keyword arguments.

So this is a clever way of assigning a new column named 'g' that is the first item in the df.col.str iterable and 'h' that is the second item in the df.col.str iterable:

df.assign(**dict(zip('gh', df.col.str)))

        col  g    h
0   (a, 10)  a   10
1   (b, 20)  b   20
2   (c, 30)  c   30
3   (d, 40)  d   40
4   (e, 50)  e   50
5   (f, 60)  f   60
6   (g, 70)  g   70
7   (h, 80)  h   80
8   (i, 90)  i   90
9  (j, 100)  j  100

My version of the list approach

With modern list comprehension and variable unpacking. Note: also inline using join

df.join(pd.DataFrame([*df.col], df.index, [*'ef']))

        col  g    h
0   (a, 10)  a   10
1   (b, 20)  b   20
2   (c, 30)  c   30
3   (d, 40)  d   40
4   (e, 50)  e   50
5   (f, 60)  f   60
6   (g, 70)  g   70
7   (h, 80)  h   80
8   (i, 90)  i   90
9  (j, 100)  j  100

The mutating version would be

df[['e', 'f']] = pd.DataFrame([*df.col], df.index)

Naive Time Test

Short DataFrame

Use the one defined above:

%timeit df.assign(**dict(zip('gh', df.col.str)))
%timeit df.assign(**dict(zip('gh', zip(*df.col))))
%timeit df.join(pd.DataFrame([*df.col], df.index, [*'gh']))

1.16 ms ± 21.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
635 µs ± 18.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
795 µs ± 42.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
Long DataFrame

10^3 times bigger

df = pd.concat([df] * 1000, ignore_index=True)

%timeit df.assign(**dict(zip('gh', df.col.str)))
%timeit df.assign(**dict(zip('gh', zip(*df.col))))
%timeit df.join(pd.DataFrame([*df.col], df.index, [*'gh']))

11.4 ms ± 1.53 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)
2.1 ms ± 41.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
2.33 ms ± 35.1 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Solution 3:

On much larger datasets, I found that .apply() is few orders of magnitude slower than pd.DataFrame(df['b'].values.tolist(), index=df.index).

This performance issue was closed in GitHub, although I do not agree with this decision:

performance issue - apply with pd.Series vs tuple #11615

It is based on this answer.