Prove that if $({x+\sqrt{x^2+1}})({y+\sqrt{y^2+1}})=1$ then $x+y=0$
Let
$$\left({x+\sqrt{x^2+1}}\right)\left({y+\sqrt{y^2+1}}\right)=1$$
Prove that $x+y=0$.
This is my solution:
Let
$$a=x+\sqrt{x^2+1}$$
and
$$b=y+\sqrt{y^2+1}$$
Then $x=\dfrac{a^2-1}{2a}$ and $y=\dfrac{b^2-1}{2b}$. Now $ab=1\implies b=\dfrac1a$. Then I replaced $x$ and $y$:
$$x+y=\dfrac{a^2-1}{2a}+\dfrac{b^2-1}{2b}=\dfrac{a^2-1}{2a}+\dfrac{\dfrac{1}{a^2}-1}{\dfrac{2}{a}}=0$$
This solution is absolutely different from solution in my book. Is my solution mathematically correct? Did I assumed something that may not be true?
Solution 1:
Note $$y+\sqrt{y^2+1}=\sqrt{x^2+1}-x\tag{1}$$ $$x+\sqrt{x^2+1}=\sqrt{y^2+1}-y\tag{2}$$ $(1)+(2)$ $$\Longrightarrow x+y=-(x+y)$$ $$\Longrightarrow x+y=0$$
Solution 2:
Hint: Let $x=\sinh a$ and $y=\sinh b$. Then, using the fact that $\cosh^2u-\sinh^2u=1$ and $\sinh u+\cosh u=e^u$, we arrive at $e^{a+b}=1\iff a+b=0$, assuming a and b are reals.
Since $\sinh u$, just like $\sin u$, is an odd function, the proof is complete.