Cost of len() function
What is the cost of len()
function for Python built-ins? (list/tuple/string/dictionary)
It's O(1) (constant time, not depending of actual length of the element - very fast) on every type you've mentioned, plus set
and others such as array.array
.
Calling len() on those data types is O(1) in CPython, the most common implementation of the Python language. Here's a link to a table that provides the algorithmic complexity of many different functions in CPython:
TimeComplexity Python Wiki Page
All those objects keep track of their own length. The time to extract the length is small (O(1) in big-O notation) and mostly consists of [rough description, written in Python terms, not C terms]: look up "len" in a dictionary and dispatch it to the built_in len function which will look up the object's __len__
method and call that ... all it has to do is return self.length
The below measurements provide evidence that len()
is O(1) for oft-used data structures.
A note regarding timeit
: When the -s
flag is used and two strings are passed to timeit
the first string is executed only once and is not timed.
List:
$ python -m timeit -s "l = range(10);" "len(l)"
10000000 loops, best of 3: 0.0677 usec per loop
$ python -m timeit -s "l = range(1000000);" "len(l)"
10000000 loops, best of 3: 0.0688 usec per loop
Tuple:
$ python -m timeit -s "t = (1,)*10;" "len(t)"
10000000 loops, best of 3: 0.0712 usec per loop
$ python -m timeit -s "t = (1,)*1000000;" "len(t)"
10000000 loops, best of 3: 0.0699 usec per loop
String:
$ python -m timeit -s "s = '1'*10;" "len(s)"
10000000 loops, best of 3: 0.0713 usec per loop
$ python -m timeit -s "s = '1'*1000000;" "len(s)"
10000000 loops, best of 3: 0.0686 usec per loop
Dictionary (dictionary-comprehension available in 2.7+):
$ python -mtimeit -s"d = {i:j for i,j in enumerate(range(10))};" "len(d)"
10000000 loops, best of 3: 0.0711 usec per loop
$ python -mtimeit -s"d = {i:j for i,j in enumerate(range(1000000))};" "len(d)"
10000000 loops, best of 3: 0.0727 usec per loop
Array:
$ python -mtimeit -s"import array;a=array.array('i',range(10));" "len(a)"
10000000 loops, best of 3: 0.0682 usec per loop
$ python -mtimeit -s"import array;a=array.array('i',range(1000000));" "len(a)"
10000000 loops, best of 3: 0.0753 usec per loop
Set (set-comprehension available in 2.7+):
$ python -mtimeit -s"s = {i for i in range(10)};" "len(s)"
10000000 loops, best of 3: 0.0754 usec per loop
$ python -mtimeit -s"s = {i for i in range(1000000)};" "len(s)"
10000000 loops, best of 3: 0.0713 usec per loop
Deque:
$ python -mtimeit -s"from collections import deque;d=deque(range(10));" "len(d)"
100000000 loops, best of 3: 0.0163 usec per loop
$ python -mtimeit -s"from collections import deque;d=deque(range(1000000));" "len(d)"
100000000 loops, best of 3: 0.0163 usec per loop