Formula for a periodic sequence of 1s and -1s with period 5

I've been playing with periodic sequences of 1s and -1s lately. This is what I came up with: \begin{eqnarray*} -(-1)^n& = &1, -1, 1, -1,\ldots\quad\textrm{(Period 2)}\\ \left(-(-1)^n\right)^{\frac{n+2}{2}} & = &1, 1, 1, -1, 1, 1, 1, -1,\ldots\quad\textrm{(Period 4)}\\ \left(\left(-(-1)^n\right)^{\frac{n+2}{2}}\right)^{\frac{n+4}{4}}& = &1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, \ldots\quad\textrm{(Period 8)} \end{eqnarray*} One can easily find a similar formula for a periodic sequence with period $ 2^n, n\in\mathbb{N} $. I also found a formula: $$ (-1)^{2 \sin\left(\frac{(2n-1)\pi}{6}\right)}, $$ which gives a sequence $ -1, 1, -1, -1, 1, -1,\ldots $ with period 3.

My question is: Is there a formula for a periodic sequence of 1s and -1s with period 5? If there is, what is it?

I know about this formula for a periodic zero and one sequence with period $ N $: $$ \sum\limits_{k = 1}^N\cos\left(-2\pi\frac{n(k-1)}{N}\right)/N = 0, 0, 0, \ldots, 1. $$ However, it requires to sum up $ N $ expressions to count the $ n\textrm{th} $ term, which is why I don't like it. I would also like the formula not to contain functions like floor or modulus.


We have $$ \frac{4\cos\left(\frac{2\pi k}5\right)+4\cos\left(\frac{4\pi k}5\right)-3}5= \left\{\begin{array}{} -1&\text{if }k\not\equiv0\pmod5\\ +1&\text{if }k\equiv0\pmod5\\ \end{array}\right.\tag{1} $$


Explanation

The roots of $z^5-1$ are $z=e^{2\pi ik/5}$ for $k\in\{0,1,2,3,4\}$. Vieta says that the coefficient of $z^4$ in $z^5-1$ the sum of the roots of $z^5-1$. That is, the sum of the roots is $0$. Taking the real part of the roots yields $$ 1+\cos\left(\frac{2\pi}5\right)+\cos\left(\frac{4\pi}5\right)+\cos\left(\frac{6\pi}5\right)+\cos\left(\frac{8\pi}5\right)=0\tag{2} $$ When $k\not\equiv0\pmod5$, $k$ is invertible $\bmod5$. Therefore, $$ \left(\cos\left(\frac{2\pi k}5\right),\cos\left(\frac{4\pi k}5\right),\cos\left(\frac{6\pi k}5\right),\cos\left(\frac{8\pi k}5\right)\right)\tag{3} $$ is a permutation of $$ \left(\cos\left(\frac{2\pi}5\right),\cos\left(\frac{4\pi}5\right),\cos\left(\frac{6\pi}5\right),\cos\left(\frac{8\pi}5\right)\right)\tag{4} $$ Therefore, $$ 1+\cos\left(\frac{2\pi k}5\right)+\cos\left(\frac{4\pi k}5\right)+\cos\left(\frac{6\pi k}5\right)+\cos\left(\frac{8\pi k}5\right)=0\tag{5} $$ when $k\not\equiv0\pmod5$. When $k\equiv0\pmod5$, $$ 1+\cos\left(\frac{2\pi k}5\right)+\cos\left(\frac{4\pi k}5\right)+\cos\left(\frac{6\pi k}5\right)+\cos\left(\frac{8\pi k}5\right)=5\tag{6} $$ Since $\cos(x)$ is an even function with period $2\pi$, $(5)$ and $(6)$ become $$ 1+2\cos\left(\frac{2\pi k}5\right)+2\cos\left(\frac{4\pi k}5\right) =\left\{\begin{array}{} 0&\text{if }k\not\equiv0\pmod5\\ 5&\text{if }k\equiv0\pmod5\\ \end{array}\right.\tag{7} $$ Equation $(1)$ is simply a scaled and translated version of $(7)$.


Surprisingly, you can use Fibonacci numbers and its generalizations for periods $3,4,5,\dots$

Period 3. Fibonacci numbers $F_n= 1, 1, \color{blue}2, 3, 5, \color{blue}8, 13, 21, \color{blue}{34},\dots$

$$A_n = -(-1)^{F_n}=1, 1, -1, 1, 1, -1,\dots$$

Period 4. Tribonacci numbers $T_n = 1, 1, \color{blue}{2, 4}, 7, 13, \color{blue}{24, 44}, 81, 149, \color{blue}{274, 504},\dots$

$$B_n = -(-1)^{T_n}=1, 1, -1, -1, 1, 1, -1, -1\dots$$

Period 5. Tetranacci numbers $W_n = 1, 1, 1, 1, \color{blue}4, 7, 13, 25, 49, \color{blue}{94}, 181, 349, 673, 1297, \color{blue}{2500},\dots$

$$C_n = -(-1)^{W_n}=1, 1, 1, 1, -1, 1, 1, 1, 1, -1,\dots$$

and so on.