Combine 3 separate numpy arrays to an RGB image in Python
rgb = np.dstack((r,g,b)) # stacks 3 h x w arrays -> h x w x 3
To also convert floats 0 .. 1 to uint8 s,
rgb_uint8 = (np.dstack((r,g,b)) * 255.999) .astype(np.uint8) # right, Janna, not 256
I don't really understand your question but here is an example of something similar I've done recently that seems like it might help:
# r, g, and b are 512x512 float arrays with values >= 0 and < 1.
from PIL import Image
import numpy as np
rgbArray = np.zeros((512,512,3), 'uint8')
rgbArray[..., 0] = r*256
rgbArray[..., 1] = g*256
rgbArray[..., 2] = b*256
img = Image.fromarray(rgbArray)
img.save('myimg.jpeg')
I hope that helps
rgb = np.dstack((r,g,b)) # stacks 3 h x w arrays -> h x w x 3
This code doesnt create 3d array if you pass 3 channels. 2 channels remain.
Convert the numpy arrays to uint8
before passing them to Image.fromarray
Eg. if you have floats in the range [0..1]:
r = Image.fromarray(numpy.uint8(r_array*255.999))
Your distortion i believe is caused by the way you are splitting your original image into its individual bands and then resizing it again before putting it into merge;
`
image=Image.open("your image")
print(image.size) #size is inverted i.e columns first rows second eg: 500,250
#convert to array
li_r=list(image.getdata(band=0))
arr_r=np.array(li_r,dtype="uint8")
li_g=list(image.getdata(band=1))
arr_g=np.array(li_g,dtype="uint8")
li_b=list(image.getdata(band=2))
arr_b=np.array(li_b,dtype="uint8")
# reshape
reshaper=arr_r.reshape(250,500) #size flipped so it reshapes correctly
reshapeb=arr_b.reshape(250,500)
reshapeg=arr_g.reshape(250,500)
imr=Image.fromarray(reshaper,mode=None) # mode I
imb=Image.fromarray(reshapeb,mode=None)
img=Image.fromarray(reshapeg,mode=None)
#merge
merged=Image.merge("RGB",(imr,img,imb))
merged.show()
`
this works well !