Spaces with equal homotopy groups but different homology groups?

Solution 1:

Standard example is $\mathbb RP^2\times S^3$ and $\mathbb RP^3\times S^2$ (they have same homotopy groups since they both have $\pi_1=\mathbb Z/2$ and the universal cover is in both cases $S^2\times S^3$).

Solution 2:

Consider $X=S^1\vee S^3$ and its double cover $X_2$ i.e, attach two copy of $S^3$ one in north pole and one in south pole of $S^1$. Then $\pi_1(X) =\mathbb{Z} = \pi_1(X_2)$. And covering map induced isomorphism in $\pi_n$ for all $n\geq 2$. But they are not homotopically equivalent/ they have different homology groups since their Eular Characteristics are different.