The documentation for the multiprocessing module shows how to pass a queue to a process started with multiprocessing.Process. But how can I share a queue with asynchronous worker processes started with apply_async? I don't need dynamic joining or anything else, just a way for the workers to (repeatedly) report their results back to base.

import multiprocessing
def worker(name, que):
    que.put("%d is done" % name)

if __name__ == '__main__':
    pool = multiprocessing.Pool(processes=3)
    q = multiprocessing.Queue()
    workers = pool.apply_async(worker, (33, q))

This fails with: RuntimeError: Queue objects should only be shared between processes through inheritance. I understand what this means, and I understand the advice to inherit rather than require pickling/unpickling (and all the special Windows restrictions). But how do I pass the queue in a way that works? I can't find an example, and I've tried several alternatives that failed in various ways. Help please?


Solution 1:

Try using multiprocessing.Manager to manage your queue and to also make it accessible to different workers.

import multiprocessing
def worker(name, que):
    que.put("%d is done" % name)

if __name__ == '__main__':
    pool = multiprocessing.Pool(processes=3)
    m = multiprocessing.Manager()
    q = m.Queue()
    workers = pool.apply_async(worker, (33, q))

Solution 2:

multiprocessing.Pool already has a shared result-queue, there is no need to additionally involve a Manager.Queue. Manager.Queue is a queue.Queue (multithreading-queue) under the hood, located on a separate server-process and exposed via proxies. This adds additional overhead compared to Pool's internal queue. Contrary to relying on Pool's native result-handling, the results in the Manager.Queue also are not guaranteed to be ordered.

The worker processes are not started with .apply_async(), this already happens when you instantiate Pool. What is started when you call pool.apply_async() is a new "job". Pool's worker-processes run the multiprocessing.pool.worker-function under the hood. This function takes care of processing new "tasks" transferred over Pool's internal Pool._inqueue and of sending results back to the parent over the Pool._outqueue. Your specified func will be executed within multiprocessing.pool.worker. func only has to return something and the result will be automatically send back to the parent.

.apply_async() immediately (asynchronously) returns a AsyncResult object (alias for ApplyResult). You need to call .get() (is blocking) on that object to receive the actual result. Another option would be to register a callback function, which gets fired as soon as the result becomes ready.

from multiprocessing import Pool

def busy_foo(i):
    """Dummy function simulating cpu-bound work."""
    for _ in range(int(10e6)):  # do stuff
        pass
    return i

if __name__ == '__main__':

    with Pool(4) as pool:
        print(pool._outqueue)  # DEMO
        results = [pool.apply_async(busy_foo, (i,)) for i in range(10)]
        # `.apply_async()` immediately returns AsyncResult (ApplyResult) object
        print(results[0])  # DEMO
        results = [res.get() for res in results]
        print(f'result: {results}')       

Example Output:

<multiprocessing.queues.SimpleQueue object at 0x7fa124fd67f0>
<multiprocessing.pool.ApplyResult object at 0x7fa12586da20>
result: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Note: Specifying the timeout-parameter for .get() will not stop the actual processing of the task within the worker, it only unblocks the waiting parent by raising a multiprocessing.TimeoutError.