Why is using `<<-` frowned upon and how can I avoid it?
I followed the discussion over HERE and am curious why is using<<-
frowned upon in R. What kind of confusion will it cause?
I also would like some tips on how I can avoid <<-
. I use the following quite often. For example:
### Create dummy data frame of 10 x 10 integer matrix.
### Each cell contains a number that is between 1 to 6.
df <- do.call("rbind", lapply(1:10, function(i) sample(1:6, 10, replace = TRUE)))
What I want to achieve is to shift every number down by 1, i.e all the 2s will become 1s, all the 3s will be come 2 etc. Therefore, all n
would be come n-1
. I achieve this by the following:
df.rescaled <- df
sapply(2:6, function(i) df.rescaled[df.rescaled == i] <<- i-1))
In this instance, how can I avoid <<-
? Ideally I would want to be able to pipe the sapply results into another variable along the lines of:
df.rescaled <- sapply(...)
Solution 1:
First point
<<-
is NOT the operator to assign to global variable. It tries to assign the variable in the nearest parent environment. So, say, this will make confusion:
f <- function() {
a <- 2
g <- function() {
a <<- 3
}
}
then,
> a <- 1
> f()
> a # the global `a` is not affected
[1] 1
Second point
You can do that by using Reduce
:
Reduce(function(a, b) {a[a==b] <- a[a==b]-1; a}, 2:6, df)
or apply
apply(df, c(1, 2), function(i) if(i >= 2) {i-1} else {i})
But
simply, this is sufficient:
ifelse(df >= 2, df-1, df)
Solution 2:
You can think of <<-
as global assignment (approximately, because as kohske points out it assigns to the top environment unless the variable name exists in a more proximal environment). Examples of why this is bad are here:
Examples of the perils of globals in R and Stata