Why SortedSet<T>.GetViewBetween isn't O(log N)?
Solution 1:
about the version
field
UPDATE1:
In my memory, a lot of (maybe all?) collections in BCL have the field version
.
First, about foreach
:
according to this msdn link
The foreach statement repeats a group of embedded statements for each element in an array or an object collection. The foreach statement is used to iterate through the collection to get the desired information, but should not be used to change the contents of the collection to avoid unpredictable side effects.
In many other collections, version
is protected the data is not modified during the foreach
For example, HashTable
's MoveNext()
:
public virtual bool MoveNext()
{
if (this.version != this.hashtable.version)
{
throw new InvalidOperationException(Environment.GetResourceString("InvalidOperation_EnumFailedVersion"));
}
//..........
}
But in the SortedSet<T>
's MoveNext()
method:
public bool MoveNext()
{
this.tree.VersionCheck();
if (this.version != this.tree.version)
{
ThrowHelper.ThrowInvalidOperationException(ExceptionResource.InvalidOperation_EnumFailedVersion);
}
//....
}
UPDATE2:
But the O(N) loop maybe not only for version
but also for the Count
property.
Because the MSDN of GetViewBetween said:
This method returns a view of the range of elements that fall between lowerValue and upperValue, as defined by the comparer .... You can make changes in both the view and in the underlying SortedSet(Of T).
So for every update it should be sync the count
field (key and value are already same). To make sure the Count
is correct
There were two policies to reach the target:
- Microsoft's
- Mono's
First, MS's, in their code, they sacrifice the GetViewBetween()
's performance and win the Count
property's performance.
VersionCheckImpl()
is one way to sync the Count
property.
Second, Mono. In mono's code,GetViewBetween()
is faster, but in their GetCount()
method:
internal override int GetCount ()
{
int count = 0;
using (var e = set.tree.GetSuffixEnumerator (lower)) {
while (e.MoveNext () && set.helper.Compare (upper, e.Current) >= 0)
++count;
}
return count;
}
It is always an O(N) operation!