Operator< and strict weak ordering
How to define operator<
on n-tuple (for example on 3-tuple) so that it satisfy strict weak ordering concept ? I know that boost library has tuple class with correctly defined operator<
but for some reasons I can't use it.
strict weak ordering
This is a mathematical term to define a relationship between two objects.
Its definition is:
Two objects x and y are equivalent if both f(x, y) and f(y, x) are false. Note that an object is always (by the irreflexivity invariant) equivalent to itself.
In terms of C++ this means if you have two objects of a given type, you should return the following values when compared with the operator <.
X a;
X b;
Condition: Test: Result
a is equivalent to b: a < b false
a is equivalent to b b < a false
a is less than b a < b true
a is less than b b < a false
b is less than a a < b false
b is less than a b < a true
How you define equivalent/less is totally dependent on the type of your object.
Formal Definition:
Strict Weak ordering
Computer Science:
Strict Weak Ordering
How it relates to operators:
Comparator
As a side note we can implement strict weak ordering manually. But we can do it simply using the std::tuple
which has implemented it for you. You simply need to create a tuple without copying the objects.
struct S
{
ThingA a;
ThingB b;
};
bool operator<(S const& lhs, S const& rhs)
{
return std::tie(lhs.a, lhs.b) < std::tie(rhs.a, rhs.b);
}
Note: This assumes that thingA
and thingB
already implement strict weak ordering themselves.
We can also implement equality the same way:
bool operator==(S const& lhs, S const& rhs)
{
return std::tie(lhs.a, lhs.b) == std::tie(rhs.a, rhs.b);
}
Note again: This assumes that thingA
and thingB
already implement equality.
if (a1 < b1)
return true;
if (b1 < a1)
return false;
// a1==b1: continue with element 2
if (a2 < b2)
return true;
if (b2 < a2)
return false;
// a2 == b2: continue with element 3
if (a3 < b3)
return true;
return false; // early out
This orders the elements by a1 being most siginificant and a3 least significant.
This can be continued ad infinitum, you could also e.g. apply it to a vector of T, iterating over comparisons of a[i] < a[i+1] / a[i+1] < a[i]. An alternate expression of the algorithm would be "skip while equal, then compare":
while (i<count-1 && !(a[i] < a[i+1]) && !(a[i+1] < a[i])
++i;
return i < count-1 && a[i] < a[i+1];
Of course, if the comparison is expensive, you might want to cache the comparison result.
[edit] removed wrong code
[edit] if more than just operator<
is available, I tend to use the pattern
if (a1 != b1)
return a1 < b1;
if (a2 != b2)
return a2 < b2;
...
...a new answer to a very old question, but the existing answer miss the easy solution from C++11...
C++11 solution
C++11 onwards provides std::tuple<T...>
, which you can use to store your data. tuple
s have a matching operator<
that initially compares the left-most element, then works along the tuple until the outcome's clear. That's suitable for providing the strict weak ordering expected by e.g. std::set
and std::map
.
If you have data in some other variables (e.g. fields in a struct
), you can even use std::tie()
to creates a tuple of references, which can then be compared to another such tuple. That makes it easy to write operator<
for specific member-data fields in a user-defined class
/struct
type:
struct My_Struct
{
int a_;
double b_;
std::string c_;
};
bool operator<(const My_Struct& lhs, const My_Struct& rhs)
{
return std::tie(lhs.a_, lhs.b_, lhs.c_) < std::tie(rhs.a_, rhs.b_, rhs.c_);
}