How do I parallelize a simple Python loop?

This is probably a trivial question, but how do I parallelize the following loop in python?

# setup output lists
output1 = list()
output2 = list()
output3 = list()

for j in range(0, 10):
    # calc individual parameter value
    parameter = j * offset
    # call the calculation
    out1, out2, out3 = calc_stuff(parameter = parameter)

    # put results into correct output list
    output1.append(out1)
    output2.append(out2)
    output3.append(out3)

I know how to start single threads in Python but I don't know how to "collect" the results.

Multiple processes would be fine too - whatever is easiest for this case. I'm using currently Linux but the code should run on Windows and Mac as-well.

What's the easiest way to parallelize this code?


Using multiple threads on CPython won't give you better performance for pure-Python code due to the global interpreter lock (GIL). I suggest using the multiprocessing module instead:

pool = multiprocessing.Pool(4)
out1, out2, out3 = zip(*pool.map(calc_stuff, range(0, 10 * offset, offset)))

Note that this won't work in the interactive interpreter.

To avoid the usual FUD around the GIL: There wouldn't be any advantage to using threads for this example anyway. You want to use processes here, not threads, because they avoid a whole bunch of problems.


from joblib import Parallel, delayed
def process(i):
    return i * i
    
results = Parallel(n_jobs=2)(delayed(process)(i) for i in range(10))
print(results)  # prints [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

The above works beautifully on my machine (Ubuntu, package joblib was pre-installed, but can be installed via pip install joblib).

Taken from https://blog.dominodatalab.com/simple-parallelization/


Edit on Mar 31, 2021: On joblib, multiprocessing, threading and asyncio

  • joblib in the above code uses import multiprocessing under the hood (and thus multiple processes, which is typically the best way to run CPU work across cores - because of the GIL)
  • You can let joblib use multiple threads instead of multiple processes, but this (or using import threading directly) is only beneficial if the threads spend considerable time on I/O (e.g. read/write to disk, send an HTTP request). For I/O work, the GIL does not block the execution of another thread
  • Since Python 3.7, as an alternative to threading, you can parallelise work with asyncio, but the same advice applies like for import threading (though in contrast to latter, only 1 thread will be used)
  • Using multiple processes incurs overhead. You need to check yourself if the above code snippet improves your wall time. Here is another one, for which I confirmed that joblib produces better results:
import time
from joblib import Parallel, delayed

def countdown(n):
    while n>0:
        n -= 1
    return n


t = time.time()
for _ in range(20):
    print(countdown(10**7), end=" ")
print(time.time() - t)  
# takes ~10.5 seconds on medium sized Macbook Pro


t = time.time()
results = Parallel(n_jobs=2)(delayed(countdown)(10**7) for _ in range(20))
print(results)
print(time.time() - t)
# takes ~6.3 seconds on medium sized Macbook Pro