Prove ${_2F_1}\left({{\tfrac16,\tfrac23}\atop{\tfrac56}}\middle|\,\frac{80}{81}\right)=\frac 35 \cdot 5^{1/6} \cdot 3^{2/3}$
I've found the following hypergeometric function value by numerical observation. The identity matches at least for $100$ digits.
$${_2F_1}\left(\begin{array}c\tfrac16,\tfrac23\\\tfrac56\end{array}\middle|\,\frac{80}{81}\right) \stackrel{?}{=} \frac 35 \cdot 5^{1/6} \cdot 3^{2/3}$$
Or using a Pfaff transformation in an equivalent form
$$81^{1/6} \cdot {_2F_1}\left(\begin{array}c\tfrac16,\tfrac16\\\tfrac56\end{array}\middle|\,-80\right) \stackrel{?}{=} \frac 35 \cdot 5^{1/6} \cdot 3^{2/3}$$
How could we prove it?
Other related problem: How could we prove that
$${_2F_1}\left(\begin{array}c\tfrac16,\tfrac23\\\tfrac56\end{array}\middle|\,\frac{80}{81}\right) \stackrel{?}{=} {_2F_1}\left(\begin{array}c\tfrac12,\tfrac56\\\tfrac12\end{array}\middle|\,\frac{4}{9}\right) = {_1F_0}\left(\begin{array}c\tfrac56\\\ - \,\end{array}\middle|\,\frac{4}{9}\right)$$
My question is related to this question by Vladimir. Because it is already proved that $${\large\int}_{-1}^1\frac{dx}{\sqrt[3]{9+4\sqrt5\,x}\ \left(1-x^2\right)^{\small2/3}} = \frac{3^{\small3/2}}{2^{\small4/3}\,5^{\small5/6}\,\pi }\Gamma^3\!\!\left(\tfrac13\right),$$
we have the answer for my question too, since according to Maple
$${\large\int}_{-1}^1\frac{dx}{\sqrt[3]{9+4\sqrt5\,x}\ \left(1-x^2\right)^{\small2/3}} = \frac{2}{9} \frac{\sqrt[3]{4}\,\sqrt[3]{3}\,\pi^2\,{_2F_1}\left(\begin{array}c\tfrac16,\tfrac23\\\tfrac56\end{array}\middle|\,\frac{80}{81}\right)}{\Gamma^3 \left( \frac{2}{3} \right)}.$$
The second part of the question $-$ the part under the line $-$ is still open.
(This may not be complete, but generalizes the observation for context.) The OP's answer mentioned Reshetnikov's integral which can be expressed as, $$\frac{1}{48^{1/4}\,K(k_3)}\,\int_{-1}^1\frac{dx}{\sqrt[3]{9+4\sqrt{5}\,x}\,\left(1-x^2\right)^{\small2/3} } =\,_2F_1\big(\tfrac{1}{3},\tfrac{1}{3};\tfrac{5}{6};-4\big)= \frac{3}{5^{5/6}} $$ so it will be fruitful to find a transformation between Reshetnikov's use of $\,_2F_1\big(\tfrac{1}{3},\tfrac{1}{3};\tfrac{5}{6};z_1\big)$ and the OP's use of $\,_2F_1\big(\tfrac{1}{6},\tfrac{2}{3};\tfrac{5}{6};z_2\big)$. Employing well-known transformations, we get,
$$G(y)=\,_2F_1\big(\tfrac{1}{3}, \tfrac{1}{3};\tfrac{5}{6}; -y\big) = \big(\tfrac1{1+2y}\big)^{1/3}\,_2F_1\Big(\tfrac{1}{6}, \tfrac{2}{3};\tfrac{5}{6}; \tfrac{(1+2y)^2-1}{(1+2y)^2}\Big)$$
It is conjectured that if $y$ are certain algebraic numbers, than $G(y)$ is also an algebraic number. Specializing the RHS, define as in this post,
$$H(\tau)=\,_2F_1\big(\tfrac16,\tfrac23;\tfrac56;(1-2\delta_4)^2\big),\quad\text{where}\;\frac1{\delta_4}-1=\frac1{27}\left(\tfrac{\eta\big((\tau+1)/3\big)}{\eta(\tau)}\right)^{12}$$ with Dedekind eta function $\eta(\tau)$. If $\tau = \frac{1+N\sqrt{-3}}2$ for some integer $N>1$, then the conjecture implies both $\delta_4$ and $H(\delta_4)$ are algebraic numbers. For example, if we use $\tau = \frac{1+5\sqrt{-3}}2$ and $\tau = \frac{1+7\sqrt{-3}}2$, respectively, then we recover your, $$H\big(\tfrac{1+\color{blue}5\sqrt{-3}}2\big)=\,_2F_1\big(\tfrac16,\tfrac23;\tfrac56;\tfrac{80}{81}\big) = \tfrac3{\color{blue}5}\,(9\sqrt5)^{1/3}$$ as well as, $$H\big(\tfrac{1+\color{blue}7\sqrt{-3}}2\big)=\,_2F_1\big(\tfrac16,\tfrac23;\tfrac56;\tfrac{3024}{3025}\big) = \tfrac4{\color{blue}7}\,55^{1/3}$$ and so on.