How to dynamically change base class of instances at runtime?

This article has a snippet showing usage of __bases__ to dynamically change the inheritance hierarchy of some Python code, by adding a class to an existing classes collection of classes from which it inherits. Ok, that's hard to read, code is probably clearer:

class Friendly:
    def hello(self):
        print 'Hello'

class Person: pass

p = Person()
Person.__bases__ = (Friendly,)
p.hello()  # prints "Hello"

That is, Person doesn't inherit from Friendly at the source level, but rather this inheritance relation is added dynamically at runtime by modification of the __bases__attribute of the Person class. However, if you change Friendly and Person to be new style classes (by inheriting from object), you get the following error:

TypeError: __bases__ assignment: 'Friendly' deallocator differs from 'object'

A bit of Googling on this seems to indicate some incompatibilities between new-style and old style classes in regards to changing the inheritance hierarchy at runtime. Specifically: "New-style class objects don't support assignment to their bases attribute".

My question, is it possible to make the above Friendly/Person example work using new-style classes in Python 2.7+, possibly by use of the __mro__ attribute?

Disclaimer: I fully realise that this is obscure code. I fully realize that in real production code tricks like this tend to border on unreadable, this is purely a thought experiment, and for funzies to learn something about how Python deals with issues related to multiple inheritance.


Ok, again, this is not something you should normally do, this is for informational purposes only.

Where Python looks for a method on an instance object is determined by the __mro__ attribute of the class which defines that object (the M ethod R esolution O rder attribute). Thus, if we could modify the __mro__ of Person, we'd get the desired behaviour. Something like:

setattr(Person, '__mro__', (Person, Friendly, object))

The problem is that __mro__ is a readonly attribute, and thus setattr won't work. Maybe if you're a Python guru there's a way around that, but clearly I fall short of guru status as I cannot think of one.

A possible workaround is to simply redefine the class:

def modify_Person_to_be_friendly():
    # so that we're modifying the global identifier 'Person'
    global Person

    # now just redefine the class using type(), specifying that the new
    # class should inherit from Friendly and have all attributes from
    # our old Person class
    Person = type('Person', (Friendly,), dict(Person.__dict__)) 

def main():
    modify_Person_to_be_friendly()
    p = Person()
    p.hello()  # works!

What this doesn't do is modify any previously created Person instances to have the hello() method. For example (just modifying main()):

def main():
    oldperson = Person()
    ModifyPersonToBeFriendly()
    p = Person()
    p.hello()  
    # works!  But:
    oldperson.hello()
    # does not

If the details of the type call aren't clear, then read e-satis' excellent answer on 'What is a metaclass in Python?'.


I've been struggling with this too, and was intrigued by your solution, but Python 3 takes it away from us:

AttributeError: attribute '__dict__' of 'type' objects is not writable

I actually have a legitimate need for a decorator that replaces the (single) superclass of the decorated class. It would require too lengthy a description to include here (I tried, but couldn't get it to a reasonably length and limited complexity -- it came up in the context of the use by many Python applications of an Python-based enterprise server where different applications needed slightly different variations of some of the code.)

The discussion on this page and others like it provided hints that the problem of assigning to __bases__ only occurs for classes with no superclass defined (i.e., whose only superclass is object). I was able to solve this problem (for both Python 2.7 and 3.2) by defining the classes whose superclass I needed to replace as being subclasses of a trivial class:

## T is used so that the other classes are not direct subclasses of object,
## since classes whose base is object don't allow assignment to their __bases__ attribute.

class T: pass

class A(T):
    def __init__(self):
        print('Creating instance of {}'.format(self.__class__.__name__))

## ordinary inheritance
class B(A): pass

## dynamically specified inheritance
class C(T): pass

A()                 # -> Creating instance of A
B()                 # -> Creating instance of B
C.__bases__ = (A,)
C()                 # -> Creating instance of C

## attempt at dynamically specified inheritance starting with a direct subclass
## of object doesn't work
class D: pass

D.__bases__ = (A,)
D()

## Result is:
##     TypeError: __bases__ assignment: 'A' deallocator differs from 'object'