In $ \triangle ABC$ show that $ 1 \lt \cos A + \cos B + \cos C \le \frac 32$
Solution 1:
We can prove $$\cos A+\cos B+\cos C=1+4\sin\frac A2\sin\frac B2\sin\frac C2$$
Now, $0<\dfrac A2<90^\circ\implies\sin\dfrac A2>0$
For the other part,
$$y=1-2\sin^2\frac A2+2\sin\frac A2\cos\frac{B-C}2$$
$$\iff2\sin^2\frac A2-\sin\frac A2\cdot2\cos\frac{B-C}2+y-1=0$$ which is a Quadratic equation in $\sin\dfrac A2$ which is real
So, the discriminant must be $\ge0$
i.e., $\left(2\cos\dfrac{B-C}2\right)^2-4\cdot2(y-1)\ge0$
$\iff 4y\le4+2\cos^2\dfrac{B-C}2=4+1+\cos(B-C)\le4+1+1$
The equality occurs iff $\cos(B-C)=1\iff B=C$ as $0<B,C<180^\circ$
where $\sin\dfrac A2=\dfrac12\implies\dfrac A2=30^\circ$ as $0<\dfrac A2<90^\circ$
Solution 2:
better is to show that $\cos(A)+\cos(B)+\cos(C)=1+\frac{r}{R}$ where $r$ is the inradius and $R$ is circumradius of the given triangle. Your theorem follows from this equation