Geo Fencing - point inside/outside polygon

I would like to determine a polygon and implement an algorithm which would check if a point is inside or outside the polygon.

Does anyone know if there is any example available of any similar algorithm?


If i remember correctly, the algorithm is to draw a horizontal line through your test point. Count how many lines of of the polygon you intersect to reach your point.

If the answer is odd, you're inside. If the answer is even, you're outside.

Edit: Yeah, what he said (Wikipedia):

alt text


C# code

bool IsPointInPolygon(List<Loc> poly, Loc point)
{
    int i, j;
    bool c = false;
    for (i = 0, j = poly.Count - 1; i < poly.Count; j = i++)
    {
        if ((((poly[i].Lt <= point.Lt) && (point.Lt < poly[j].Lt)) 
                || ((poly[j].Lt <= point.Lt) && (point.Lt < poly[i].Lt))) 
                && (point.Lg < (poly[j].Lg - poly[i].Lg) * (point.Lt - poly[i].Lt) 
                    / (poly[j].Lt - poly[i].Lt) + poly[i].Lg))
        {

            c = !c;
        }
    }

    return c;
}

Location class

public class Loc
{
    private double lt;
    private double lg;

    public double Lg
    {
        get { return lg; }
        set { lg = value; }
    }

    public double Lt
    {
        get { return lt; }
        set { lt = value; }
    }

    public Loc(double lt, double lg)
    {
        this.lt = lt;
        this.lg = lg;
    }
}

After searching the web and trying various implementations and porting them from C++ to C# I finally got my code straight:

        public static bool PointInPolygon(LatLong p, List<LatLong> poly)
    {
        int n = poly.Count();

        poly.Add(new LatLong { Lat = poly[0].Lat, Lon = poly[0].Lon });
        LatLong[] v = poly.ToArray();

        int wn = 0;    // the winding number counter

        // loop through all edges of the polygon
        for (int i = 0; i < n; i++)
        {   // edge from V[i] to V[i+1]
            if (v[i].Lat <= p.Lat)
            {         // start y <= P.y
                if (v[i + 1].Lat > p.Lat)      // an upward crossing
                    if (isLeft(v[i], v[i + 1], p) > 0)  // P left of edge
                        ++wn;            // have a valid up intersect
            }
            else
            {                       // start y > P.y (no test needed)
                if (v[i + 1].Lat <= p.Lat)     // a downward crossing
                    if (isLeft(v[i], v[i + 1], p) < 0)  // P right of edge
                        --wn;            // have a valid down intersect
            }
        }
        if (wn != 0)
            return true;
        else
            return false;

    }

    private static int isLeft(LatLong P0, LatLong P1, LatLong P2)
    {
        double calc = ((P1.Lon - P0.Lon) * (P2.Lat - P0.Lat)
                - (P2.Lon - P0.Lon) * (P1.Lat - P0.Lat));
        if (calc > 0)
            return 1;
        else if (calc < 0)
            return -1;
        else
            return 0;
    }

The isLeft function was giving me rounding problems and I spent hours without realizing that I was doing the conversion wrong, so forgive me for the lame if block at the end of that function.

BTW, this is the original code and article: http://softsurfer.com/Archive/algorithm_0103/algorithm_0103.htm


By far the best explanation and implementation can be found at Point In Polygon Winding Number Inclusion

There is even a C++ implementation at the end of the well explained article. This site also contains some great algorithms/solutions for other geometry based problems.

I have modified and used the C++ implementation and also created a C# implementation. You definitely want to use the Winding Number algorithm as it is more accurate than the edge crossing algorithm and it is very fast.


I think there is a simpler and more efficient solution.

Here is the code in C++. I should be simple to convert it to C#.

int pnpoly(int npol, float *xp, float *yp, float x, float y)
{
  int i, j, c = 0;
  for (i = 0, j = npol-1; i < npol; j = i++) {
    if ((((yp[i] <= y) && (y < yp[j])) ||
         ((yp[j] <= y) && (y < yp[i]))) &&
        (x < (xp[j] - xp[i]) * (y - yp[i]) / (yp[j] - yp[i]) + xp[i]))
      c = !c;
  }
  return c;
}