How can I intercept calls to python's "magic" methods in new style classes?
I'm trying to intercept calls to python's double underscore magic methods in new style classes. This is a trivial example but it show's the intent:
class ShowMeList(object):
def __init__(self, it):
self._data = list(it)
def __getattr__(self, name):
attr = object.__getattribute__(self._data, name)
if callable(attr):
def wrapper(*a, **kw):
print "before the call"
result = attr(*a, **kw)
print "after the call"
return result
return wrapper
return attr
If I use that proxy object around list I get the expected behavior for non-magic methods but my wrapper function is never called for magic methods.
>>> l = ShowMeList(range(8))
>>> l #call to __repr__
<__main__.ShowMeList object at 0x9640eac>
>>> l.append(9)
before the call
after the call
>> len(l._data)
9
If I don't inherit from object (first line class ShowMeList:
) everything works as expected:
>>> l = ShowMeList(range(8))
>>> l #call to __repr__
before the call
after the call
[0, 1, 2, 3, 4, 5, 6, 7]
>>> l.append(9)
before the call
after the call
>> len(l._data)
9
How do I accomplish this intercept with new style classes?
For performance reasons, Python always looks in the class (and parent classes') __dict__
for magic methods and does not use the normal attribute lookup mechanism. A workaround is to use a metaclass to automatically add proxies for magic methods at the time of class creation; I've used this technique to avoid having to write boilerplate call-through methods for wrapper classes, for example.
class Wrapper(object):
"""Wrapper class that provides proxy access to an instance of some
internal instance."""
__wraps__ = None
__ignore__ = "class mro new init setattr getattr getattribute"
def __init__(self, obj):
if self.__wraps__ is None:
raise TypeError("base class Wrapper may not be instantiated")
elif isinstance(obj, self.__wraps__):
self._obj = obj
else:
raise ValueError("wrapped object must be of %s" % self.__wraps__)
# provide proxy access to regular attributes of wrapped object
def __getattr__(self, name):
return getattr(self._obj, name)
# create proxies for wrapped object's double-underscore attributes
class __metaclass__(type):
def __init__(cls, name, bases, dct):
def make_proxy(name):
def proxy(self, *args):
return getattr(self._obj, name)
return proxy
type.__init__(cls, name, bases, dct)
if cls.__wraps__:
ignore = set("__%s__" % n for n in cls.__ignore__.split())
for name in dir(cls.__wraps__):
if name.startswith("__"):
if name not in ignore and name not in dct:
setattr(cls, name, property(make_proxy(name)))
Usage:
class DictWrapper(Wrapper):
__wraps__ = dict
wrapped_dict = DictWrapper(dict(a=1, b=2, c=3))
# make sure it worked....
assert "b" in wrapped_dict # __contains__
assert wrapped_dict == dict(a=1, b=2, c=3) # __eq__
assert "'a': 1" in str(wrapped_dict) # __str__
assert wrapped_dict.__doc__.startswith("dict()") # __doc__
Using __getattr__
and __getattribute__
are the last resources of a class to respond to getting an attribute.
Consider the following:
>>> class C:
x = 1
def __init__(self):
self.y = 2
def __getattr__(self, attr):
print(attr)
>>> c = C()
>>> c.x
1
>>> c.y
2
>>> c.z
z
The __getattr__
method is only called when nothing else works (It will not work on operators, and you can read about that here).
On your example, the __repr__
and many other magic methods are already defined in the object
class.
One thing can be done, thought, and it is to define those magic methods and make then call the __getattr__
method. Check this other question by me and its answers (link) to see some code doing that.
As of the answers to Asymmetric behavior for __getattr__, newstyle vs oldstyle classes (see also the Python docs), modifying access to "magic" methods with __getattr__
or __getattribute__
is just not possible with new-style classes. This restriction makes the interpreter much faster.