How to find ${\large\int}_1^\infty\frac{1-x+\ln x}{x \left(1+x^2\right) \ln^2 x} \mathrm dx$? [closed]

Solution 1:

Here is another Feynman's way to evaluate the integral. Set $x=\frac1t$, then $$ \int_1^\infty\frac{1-x+\ln x}{x \left(1+x^2\right) \ln^2 x}\ dx=\int_0^1\frac{t-1-t\ln t}{(1+t^2)\ln^2t}\ dt. $$ Now consider $$ \mathcal{I}(\alpha)=\int_0^1t^\alpha\cdot\frac{t-1-t\ln t}{(1+t^2)\ln^2t}\ dt. $$ Hence \begin{align} \frac{d^2\mathcal{I}}{d\alpha^2}&=\int_0^1\frac{t^\alpha}{1+t^2}(t-1-t\ln t)\ dt\\ &=\int_0^1\sum_{n=0}^\infty(-1)^nt^{2n+\alpha}(t-1-t\ln t)\ dt\\ &=\sum_{n=0}^\infty(-1)^n\int_0^1\left(t^{2n+\alpha+1}-t^{2n+\alpha}-t^{2n+\alpha+1}\ln t\right)\ dt\tag1\\ &=\sum_{n=0}^\infty(-1)^n\left[\frac{1}{2n+\alpha+2}-\frac{1}{2n+\alpha+1}+\frac{1}{(2n+\alpha+2)^2}\right]\tag2\\ &=-\frac14\left[\psi\left(\frac{\alpha+2}{4}\right)-\psi\left(\frac{\alpha+4}{4}\right)\right]+\frac14\left[\psi\left(\frac{\alpha+1}{4}\right)-\psi\left(\frac{\alpha+3}{4}\right)\right]\\ &\quad+\frac1{16}\left[\psi_1\left(\frac{\alpha+2}{4}\right)-\psi_1\left(\frac{\alpha+4}{4}\right)\right]\tag3\\ \frac{d\mathcal{I}}{d\alpha}&=-\ln\Gamma\left(\frac{\alpha+2}{4}\right)+\ln\Gamma\left(\frac{\alpha+4}{4}\right)+\ln\Gamma\left(\frac{\alpha+1}{4}\right)-\ln\Gamma\left(\frac{\alpha+3}{4}\right)\\ &\quad+\frac14\left[\psi\left(\frac{\alpha+2}{4}\right)-\psi\left(\frac{\alpha+4}{4}\right)\right]\tag4\\ &=\ln\Gamma\left[\frac{(\alpha+1)(\alpha+4)}{(\alpha+2)(\alpha+3)}\right]+\frac14\left[\psi\left(\frac{\alpha+2}{4}\right)-\psi\left(\frac{\alpha+4}{4}\right)\right]\tag5\\ \mathcal{I}(\alpha)&=\int\ln\Gamma\left[\frac{(\alpha+1)(\alpha+4)}{(\alpha+2)(\alpha+3)}\right]\ d\alpha+\ln\Gamma\left(\frac{\alpha+2}{4}\right)-\ln\Gamma\left(\frac{\alpha+4}{4}\right). \end{align} Since $0<t<1$, then as $\alpha\to\infty$, implying $\mathcal{I}(\alpha)\to0$ and $\mathcal{I}'(\alpha)\to0$. Thus

$$ \mathcal{I}(0)=\int_1^\infty\frac{1-x+\ln x}{x \left(1+x^2\right) \ln^2 x}\ dx=\color{blue}{\frac{\ln2}6+\frac{\ln\pi}2-6\ln A+\frac2\pi G}, $$

where $A$ is the Glaisher–Kinkelin constant and $G$ is the Catalan constant.


Notes :

$\displaystyle(1)\ \ \int_0^1 x^\alpha \ln^n x\ dx=\frac{(-1)^n n!}{(\alpha+1)^{n+1}}, \qquad\text{for }\ n=0,1,2,\ldots$

$\displaystyle(2)\ \ \sum_{k=0}^\infty\frac{(-1)^{k}}{(z+k)^{m+1}}=\frac1{(-2)^{m+1}m!}\left[\psi_{m}\left(\frac{z}{2}\right)-\psi_{m}\left(\frac{z+1}{2}\right)\right]$

$\displaystyle(3)\ \ \psi_{m}(z) := \frac{d^m}{dz^m} \psi(z) = \frac{d^{m+1}}{dz^{m+1}} \ln\Gamma(z)$

$\displaystyle(4)\ \ \int\ln\Gamma(z)\ dz=\frac{z(1-z)}{2}+\frac{z}{2}\log 2\pi +z\log\Gamma(z) -\log \text{G}(1+z)+C$,

$\qquad$where $\text{G}(\cdot)$ is the Barnes G-function and $C$ is a constant of integration. Also for $a,b>0$ $$ \int\ln\Gamma\left(\frac{x+a}{b}\right)\ dx=b\ \psi^{(-2)}\left(\frac{x+a}{b}\right)+C. $$

$\displaystyle(5)\ \ $As $\alpha\to\infty$, both of sides tend to $0$, hence the constant of integration is $0$.

Solution 2:

$$I=\frac{\ln2}6+\frac{\ln\pi}2-6\ln A+\frac2\pi G,$$ where $A$ is the Glaisher–Kinkelin constant and $G$ is the Catalan constant.