Python serialization - Why pickle?
Pickling is a way to convert a python object (list, dict, etc.) into a character stream. The idea is that this character stream contains all the information necessary to reconstruct the object in another python script.
As for where the pickled information is stored, usually one would do:
with open('filename', 'wb') as f:
var = {1 : 'a' , 2 : 'b'}
pickle.dump(var, f)
That would store the pickled version of our var
dict in the 'filename' file. Then, in another script, you could load from this file into a variable and the dictionary would be recreated:
with open('filename','rb') as f:
var = pickle.load(f)
Another use for pickling is if you need to transmit this dictionary over a network (perhaps with sockets or something.) You first need to convert it into a character stream, then you can send it over a socket connection.
Also, there is no "compression" to speak of here...it's just a way to convert from one representation (in RAM) to another (in "text").
About.com has a nice introduction of pickling here.
Pickling is absolutely necessary for distributed and parallel computing.
Say you wanted to do a parallel map-reduce with multiprocessing
(or across cluster nodes with pyina), then you need to make sure the function you want to have mapped across the parallel resources will pickle. If it doesn't pickle, you can't send it to the other resources on another process, computer, etc. Also see here for a good example.
To do this, I use dill, which can serialize almost anything in python. Dill also has some good tools for helping you understand what is causing your pickling to fail when your code fails.
And, yes, people use picking to save the state of a calculation, or your ipython session, or whatever. You can also extend pickle's Pickler and UnPickler to do compression with bz2
or gzip
if you'd like.