How to calculate limit of a function having factorial in denominator
Solution 1:
$$0<\frac{2^n}{n!}=\frac{2}{1} \cdot \frac{2}{2} \cdot \frac{2}{3} \cdot \frac{2}{4} \cdot \dots \cdot \frac{2}{ n} \leq \frac{2}{1} \cdot \frac{2}{2} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \dots \cdot \frac{2}{3}=\frac{2}{1} \cdot \frac{2}{2} \cdot \left (\frac{2}{3} \right )^{n-2}=2 \left ( \frac{2}{3} \right )^{n-2}$$
As $n \rightarrow \infty$, $\left ( \frac{2}{3} \right )^{n-2} \rightarrow 0$
Therefore, from the Squeeze Theorem $$\lim_{n \rightarrow \infty} \frac{2^n}{n!}=0$$
Solution 2:
BIG HINT:
$$\sum\limits_{n=0}^{\infty}\frac{x^n}{n!}=e^x<\infty$$
Solution 3:
You can use the theorem of d'Alembert for the sequences then you immediately have:
if $x_n=\frac{2^n}{n!}$,
$$\lim_{n\to\infty }\left|\frac{x_{n+1}}{x_n} \right|=\lim_{n\to\infty }\frac{2^{n+1}n!}{(n+1)! 2^n}=\lim_{n\to\infty }\frac{2}{(n+1)}=0<1$$
then $$\lim_{n\to\infty }\frac{2^n}{n!}=0.$$
Solution 4:
Hint: You can use Stirling's approximation $$n! \sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^n $$
Solution 5:
One way to aproach these kinds of limits is to use the monotone convergence theorem, (real bounded monotone sequences converge). So for convergence you need to prove that 1. your sequence is monotone, 2. it's bounded
For your sequence you can prove that it is decreasing by using the ratio test as in idm's answer. And you can clearly see that it is bounded by 0. This means that a limit exists, let $a_n$ be your sequence, then
$$ a_{n+1} = \frac{2^{n+1}}{(n+1)!} = a_n\frac{2}{n+1} $$
Now because we know $\lim_{n \to \infty} a_n = a$, we can replace $a_n$ and $a_{n+1}$ in the above equation by their limit, when $n \to \infty$
$$ a = a(\lim_{n \to \infty}\frac{2}{n+1}) = 0 $$