In Python, what is the fastest algorithm for removing duplicates from a list so that all elements are unique *while preserving order*? [duplicate]
def unique(items):
found = set()
keep = []
for item in items:
if item not in found:
found.add(item)
keep.append(item)
return keep
print unique([1, 1, 2, 'a', 'a', 3])
Using:
lst = [8, 8, 9, 9, 7, 15, 15, 2, 20, 13, 2, 24, 6, 11, 7, 12, 4, 10, 18, 13, 23, 11, 3, 11, 12, 10, 4, 5, 4, 22, 6, 3, 19, 14, 21, 11, 1, 5, 14, 8, 0, 1, 16, 5, 10, 13, 17, 1, 16, 17, 12, 6, 10, 0, 3, 9, 9, 3, 7, 7, 6, 6, 7, 5, 14, 18, 12, 19, 2, 8, 9, 0, 8, 4, 5]
And using the timeit module:
$ python -m timeit -s 'import uniquetest' 'uniquetest.etchasketch(uniquetest.lst)'
And so on for the various other functions (which I named after their posters), I have the following results (on my first generation Intel MacBook Pro):
Allen: 14.6 µs per loop [1]
Terhorst: 26.6 µs per loop
Tarle: 44.7 µs per loop
ctcherry: 44.8 µs per loop
Etchasketch 1 (short): 64.6 µs per loop
Schinckel: 65.0 µs per loop
Etchasketch 2: 71.6 µs per loop
Little: 89.4 µs per loop
Tyler: 179.0 µs per loop
[1] Note that Allen modifies the list in place – I believe this has skewed the time, in that the timeit
module runs the code 100000 times and 99999 of them are with the dupe-less list.
Summary: Straight-forward implementation with sets wins over confusing one-liners :-)
Update: on Python3.7+:
>>> list(dict.fromkeys('abracadabra'))
['a', 'b', 'r', 'c', 'd']
old answer:
Here is the fastest solution so far (for the following input):
def del_dups(seq):
seen = {}
pos = 0
for item in seq:
if item not in seen:
seen[item] = True
seq[pos] = item
pos += 1
del seq[pos:]
lst = [8, 8, 9, 9, 7, 15, 15, 2, 20, 13, 2, 24, 6, 11, 7, 12, 4, 10, 18,
13, 23, 11, 3, 11, 12, 10, 4, 5, 4, 22, 6, 3, 19, 14, 21, 11, 1,
5, 14, 8, 0, 1, 16, 5, 10, 13, 17, 1, 16, 17, 12, 6, 10, 0, 3, 9,
9, 3, 7, 7, 6, 6, 7, 5, 14, 18, 12, 19, 2, 8, 9, 0, 8, 4, 5]
del_dups(lst)
print(lst)
# -> [8, 9, 7, 15, 2, 20, 13, 24, 6, 11, 12, 4, 10, 18, 23, 3, 5, 22, 19, 14,
# 21, 1, 0, 16, 17]
Dictionary lookup is slightly faster then the set's one in Python 3.
What's going to be fastest depends on what percentage of your list is duplicates. If it's nearly all duplicates, with few unique items, creating a new list will probably be faster. If it's mostly unique items, removing them from the original list (or a copy) will be faster.
Here's one for modifying the list in place:
def unique(items):
seen = set()
for i in xrange(len(items)-1, -1, -1):
it = items[i]
if it in seen:
del items[i]
else:
seen.add(it)
Iterating backwards over the indices ensures that removing items doesn't affect the iteration.