How to normalize a 2-dimensional numpy array in python less verbose?
Solution 1:
Broadcasting is really good for this:
row_sums = a.sum(axis=1)
new_matrix = a / row_sums[:, numpy.newaxis]
row_sums[:, numpy.newaxis]
reshapes row_sums from being (3,)
to being (3, 1)
. When you do a / b
, a
and b
are broadcast against each other.
You can learn more about broadcasting here or even better here.
Solution 2:
Scikit-learn offers a function normalize()
that lets you apply various normalizations. The "make it sum to 1" is called L1-norm. Therefore:
from sklearn.preprocessing import normalize
matrix = numpy.arange(0,27,3).reshape(3,3).astype(numpy.float64)
# array([[ 0., 3., 6.],
# [ 9., 12., 15.],
# [ 18., 21., 24.]])
normed_matrix = normalize(matrix, axis=1, norm='l1')
# [[ 0. 0.33333333 0.66666667]
# [ 0.25 0.33333333 0.41666667]
# [ 0.28571429 0.33333333 0.38095238]]
Now your rows will sum to 1.