How to spawn parallel child processes on a multi-processor system?

I have a Python script that I want to use as a controller to another Python script. I have a server with 64 processors, so want to spawn up to 64 child processes of this second Python script. The child script is called:

$ python create_graphs.py --name=NAME

where NAME is something like XYZ, ABC, NYU etc.

In my parent controller script I retrieve the name variable from a list:

my_list = [ 'XYZ', 'ABC', 'NYU' ]

So my question is, what is the best way to spawn off these processes as children? I want to limit the number of children to 64 at a time, so need to track the status (if the child process has finished or not) so I can efficiently keep the whole generation running.

I looked into using the subprocess package, but rejected it because it only spawns one child at a time. I finally found the multiprocessor package, but I admit to being overwhelmed by the whole threads vs. subprocesses documentation.

Right now, my script uses subprocess.call to only spawn one child at a time and looks like this:

#!/path/to/python
import subprocess, multiprocessing, Queue
from multiprocessing import Process

my_list = [ 'XYZ', 'ABC', 'NYU' ]

if __name__ == '__main__':
    processors = multiprocessing.cpu_count()

    for i in range(len(my_list)):
        if( i < processors ):
             cmd = ["python", "/path/to/create_graphs.py", "--name="+ my_list[i]]
             child = subprocess.call( cmd, shell=False )

I really want it to spawn up 64 children at a time. In other stackoverflow questions I saw people using Queue, but it seems like that creates a performance hit?


Solution 1:

What you are looking for is the process pool class in multiprocessing.

import multiprocessing
import subprocess

def work(cmd):
    return subprocess.call(cmd, shell=False)

if __name__ == '__main__':
    count = multiprocessing.cpu_count()
    pool = multiprocessing.Pool(processes=count)
    print pool.map(work, ['ls'] * count)

And here is a calculation example to make it easier to understand. The following will divide 10000 tasks on N processes where N is the cpu count. Note that I'm passing None as the number of processes. This will cause the Pool class to use cpu_count for the number of processes (reference)

import multiprocessing
import subprocess

def calculate(value):
    return value * 10

if __name__ == '__main__':
    pool = multiprocessing.Pool(None)
    tasks = range(10000)
    results = []
    r = pool.map_async(calculate, tasks, callback=results.append)
    r.wait() # Wait on the results
    print results

Solution 2:

Here is the solution I came up, based on Nadia and Jim's comments. I am not sure if it is the best way, but it works. The original child script being called needs to be a shell script because I need to use some 3rd party apps including Matlab. So I had to take it out of Python and code it in bash.

import sys
import os
import multiprocessing
import subprocess

def work(staname):
    print 'Processing station:',staname
    print 'Parent process:', os.getppid()
    print 'Process id:', os.getpid()
    cmd = [ "/bin/bash" "/path/to/executable/create_graphs.sh","--name=%s" % (staname) ]
    return subprocess.call(cmd, shell=False)

if __name__ == '__main__':

    my_list = [ 'XYZ', 'ABC', 'NYU' ]

    my_list.sort()

    print my_list

    # Get the number of processors available
    num_processes = multiprocessing.cpu_count()

    threads = []

    len_stas = len(my_list)

    print "+++ Number of stations to process: %s" % (len_stas)

    # run until all the threads are done, and there is no data left

    for list_item in my_list:

        # if we aren't using all the processors AND there is still data left to
        # compute, then spawn another thread

        if( len(threads) < num_processes ):

            p = multiprocessing.Process(target=work,args=[list_item])

            p.start()

            print p, p.is_alive()

            threads.append(p)

        else:

            for thread in threads:

                if not thread.is_alive():

                    threads.remove(thread)

Does this seem like a reasonable solution? I tried to use Jim's while loop format, but my script just returned nothing. I am not sure why that would be. Here is the output when I run the script with Jim's 'while' loop replacing the 'for' loop:

hostname{me}2% controller.py 
['ABC', 'NYU', 'XYZ']
Number of processes: 64
+++ Number of stations to process: 3
hostname{me}3%

When I run it with the 'for' loop, I get something more meaningful:

hostname{me}6% controller.py 
['ABC', 'NYU', 'XYZ']
Number of processes: 64
+++ Number of stations to process: 3
Processing station: ABC
Parent process: 1056
Process id: 1068
Processing station: NYU
Parent process: 1056
Process id: 1069
Processing station: XYZ
Parent process: 1056
Process id: 1071
hostname{me}7%

So this works, and I am happy. However, I still don't get why I can't use Jim's 'while' style loop instead of the 'for' loop I am using. Thanks for all the help - I am impressed with the breadth of knowledge @ stackoverflow.