Python: how to store a numpy multidimensional array in PyTables?

Solution 1:

There may be a simpler way, but this is how you'd go about doing it, as far as I know:

import numpy as np
import tables

# Generate some data
x = np.random.random((100,100,100))

# Store "x" in a chunked array...
f = tables.open_file('test.hdf', 'w')
atom = tables.Atom.from_dtype(x.dtype)
ds = f.createCArray(f.root, 'somename', atom, x.shape)
ds[:] = x
f.close()

If you want to specify the compression to use, have a look at tables.Filters. E.g.

import numpy as np
import tables

# Generate some data
x = np.random.random((100,100,100))

# Store "x" in a chunked array with level 5 BLOSC compression...
f = tables.open_file('test.hdf', 'w')
atom = tables.Atom.from_dtype(x.dtype)
filters = tables.Filters(complib='blosc', complevel=5)
ds = f.createCArray(f.root, 'somename', atom, x.shape, filters=filters)
ds[:] = x
f.close()

There's probably a simpler way for a lot of this... I haven't used pytables for anything other than table-like data in a long while.

Note: with pytables 3.0, f.createCArray was renamed to f.create_carray. It can also accept the array directly, without specifying the atom,

f.create_carray('/', 'somename', obj=x, filters=filters)