A certain “harmonic” sum
Is there a simple, elementary proof of the fact that:
$$\sum_{n=0}^\infty\left(\frac{1}{6n+1}+\frac{-1}{6n+2}+\frac{-2}{6n+3}+\frac{-1}{6n+4}+\frac{1}{6n+5}+\frac{2}{6n+6}\right)=0$$
I have thought of a very simple notation for "harmonic" sums like these: just write down the numerators. So, for example:
$[\overline{1}]=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\dots=\infty\;$ is the harmonic series
$[\overline{1,-1}]=\frac{1}{1}+\frac{-1}{2}+\frac{1}{3}+\dots=\ln2\;$ is well known
$[\overline{1,1,-2}]=\frac{1}{1}+\frac{1}{2}+\frac{-2}{3}+\dots=\ln3\;$ is slightly less well known (I think)
$[\overline{1,0,-1,0}]=\frac{1}{1}+\frac{0}{2}+\frac{-1}{3}+\dots=\frac{\pi}{4}\;$ is the Gregory-Leibniz series for $\pi$
What I claim is that $[\overline{1,-1,-2,-1,1,2}]$ is equal to $0$. I wonder if there are any simple proofs of this (i.e. definitely without using calculus, preferably without appealing to complex numbers/taylor series/etc.)
P.S. I know a method that doesn't use any integrals or derivatives, but requires knowledge of the taylor series for $\ln(x)$ and the Euler formula for $e^{ix}$.
The reason I believe that there should be an elementary proof is that the sum, $0$, is a very simple number.
Solution 1:
We may rewrite your series in the following manner:
\begin{align} &\sum_{n=0}^\infty\left(\frac{1}{6n+1}+\frac{-1}{6n+2}+\frac{-2}{6n+3}+\frac{-1}{6n+4}+\frac{1}{6n+5}+\frac{2}{6n+6}\right)\\ &=\sum_{n=0}^\infty\left(\frac{1}{6n+1}+\frac{-1}{6n+2}+\frac{1}{6n+3}+\frac{-1}{6n+4}+\frac{1}{6n+5}+\frac{-1}{6n+6}\right)\\ &\hspace{1cm}-\sum_{n=0}^\infty\left(\frac{3}{6n+3}-\frac{3}{6n+6}\right)\\ \end{align} But these summations are both the alternating series $\sum_{n=0}^\infty \dfrac{(-1)^n}{n+1}$. Therefore they cancel and the summation is equal to zero.
Solution 2:
In the language of Dirichlet series and the Riemann zeta function I believe this could be counted as an elementary proof:
Add the variable $s$ as an exponent to your series so that it becomes:
$$\sum_{n=0}^\infty\left(\frac{1}{(6n+1)^s}+\frac{-1}{(6n+2)^s}+\frac{-2}{(6n+3)^s}+\frac{-1}{(6n+4)^s}+\frac{1}{(6n+5)^s}+\frac{2}{(6n+6)^s}\right)$$
$$=\zeta(s)\left(1-\frac{1}{2^{s-1}}\right)\left(1-\frac{1}{3^{s-1}}\right) $$
In the case of $s=1$ we have exactly your series.
Therefore we investigate the limit:
$$\lim_{s\to 1} \, \zeta(s)\left(1-\frac{1}{2^{s-1}}\right)\left(1-\frac{1}{3^{s-1}}\right)$$
taking only parts of the limit we have:
$$\lim_{s\to 1} \, \zeta(s)\left(1-\frac{1}{2^{s-1}}\right)=\log(2)$$
and:
$$\lim_{s\to 1} \, \left(1-\frac{1}{3^{s-1}}\right)=0$$
therefore we have:
$$\lim_{s\to 1} \, \zeta(s)\left(1-\frac{1}{2^{s-1}}\right)\left(1-\frac{1}{3^{s-1}}\right)=\log(2) \cdot 0 = 0$$
hence:
$$\lim_{s\to 1} \, \sum_{n=0}^\infty\left(\frac{1}{(6n+1)^s}+\frac{-1}{(6n+2)^s}+\frac{-2}{(6n+3)^s}+\frac{-1}{(6n+4)^s}+\frac{1}{(6n+5)^s}+\frac{2}{(6n+6)^s}\right)=0$$
which is equivalent to: $$\sum_{n=0}^\infty\left(\frac{1}{6n+1}+\frac{-1}{6n+2}+\frac{-2}{6n+3}+\frac{-1}{6n+4}+\frac{1}{6n+5}+\frac{2}{6n+6}\right)=0$$