Python multiprocessing PicklingError: Can't pickle <type 'function'>

I am sorry that I can't reproduce the error with a simpler example, and my code is too complicated to post. If I run the program in IPython shell instead of the regular Python, things work out well.

I looked up some previous notes on this problem. They were all caused by using pool to call function defined within a class function. But this is not the case for me.

Exception in thread Thread-3:
Traceback (most recent call last):
  File "/usr/lib64/python2.7/threading.py", line 552, in __bootstrap_inner
    self.run()
  File "/usr/lib64/python2.7/threading.py", line 505, in run
    self.__target(*self.__args, **self.__kwargs)
  File "/usr/lib64/python2.7/multiprocessing/pool.py", line 313, in _handle_tasks
    put(task)
PicklingError: Can't pickle <type 'function'>: attribute lookup __builtin__.function failed

I would appreciate any help.

Update: The function I pickle is defined at the top level of the module. Though it calls a function that contains a nested function. i.e, f() calls g() calls h() which has a nested function i(), and I am calling pool.apply_async(f). f(), g(), h() are all defined at the top level. I tried simpler example with this pattern and it works though.


Here is a list of what can be pickled. In particular, functions are only picklable if they are defined at the top-level of a module.

This piece of code:

import multiprocessing as mp

class Foo():
    @staticmethod
    def work(self):
        pass

if __name__ == '__main__':   
    pool = mp.Pool()
    foo = Foo()
    pool.apply_async(foo.work)
    pool.close()
    pool.join()

yields an error almost identical to the one you posted:

Exception in thread Thread-2:
Traceback (most recent call last):
  File "/usr/lib/python2.7/threading.py", line 552, in __bootstrap_inner
    self.run()
  File "/usr/lib/python2.7/threading.py", line 505, in run
    self.__target(*self.__args, **self.__kwargs)
  File "/usr/lib/python2.7/multiprocessing/pool.py", line 315, in _handle_tasks
    put(task)
PicklingError: Can't pickle <type 'function'>: attribute lookup __builtin__.function failed

The problem is that the pool methods all use a mp.SimpleQueue to pass tasks to the worker processes. Everything that goes through the mp.SimpleQueue must be pickable, and foo.work is not picklable since it is not defined at the top level of the module.

It can be fixed by defining a function at the top level, which calls foo.work():

def work(foo):
    foo.work()

pool.apply_async(work,args=(foo,))

Notice that foo is pickable, since Foo is defined at the top level and foo.__dict__ is picklable.


I'd use pathos.multiprocesssing, instead of multiprocessing. pathos.multiprocessing is a fork of multiprocessing that uses dill. dill can serialize almost anything in python, so you are able to send a lot more around in parallel. The pathos fork also has the ability to work directly with multiple argument functions, as you need for class methods.

>>> from pathos.multiprocessing import ProcessingPool as Pool
>>> p = Pool(4)
>>> class Test(object):
...   def plus(self, x, y): 
...     return x+y
... 
>>> t = Test()
>>> p.map(t.plus, x, y)
[4, 6, 8, 10]
>>> 
>>> class Foo(object):
...   @staticmethod
...   def work(self, x):
...     return x+1
... 
>>> f = Foo()
>>> p.apipe(f.work, f, 100)
<processing.pool.ApplyResult object at 0x10504f8d0>
>>> res = _
>>> res.get()
101

Get pathos (and if you like, dill) here: https://github.com/uqfoundation


As others have said multiprocessing can only transfer Python objects to worker processes which can be pickled. If you cannot reorganize your code as described by unutbu, you can use dills extended pickling/unpickling capabilities for transferring data (especially code data) as I show below.

This solution requires only the installation of dill and no other libraries as pathos:

import os
from multiprocessing import Pool

import dill


def run_dill_encoded(payload):
    fun, args = dill.loads(payload)
    return fun(*args)


def apply_async(pool, fun, args):
    payload = dill.dumps((fun, args))
    return pool.apply_async(run_dill_encoded, (payload,))


if __name__ == "__main__":

    pool = Pool(processes=5)

    # asyn execution of lambda
    jobs = []
    for i in range(10):
        job = apply_async(pool, lambda a, b: (a, b, a * b), (i, i + 1))
        jobs.append(job)

    for job in jobs:
        print job.get()
    print

    # async execution of static method

    class O(object):

        @staticmethod
        def calc():
            return os.getpid()

    jobs = []
    for i in range(10):
        job = apply_async(pool, O.calc, ())
        jobs.append(job)

    for job in jobs:
        print job.get()