How to solve a pair of nonlinear equations using Python?
What's the (best) way to solve a pair of non linear equations using Python. (Numpy, Scipy or Sympy)
eg:
- x+y^2 = 4
- e^x+ xy = 3
A code snippet which solves the above pair will be great
Solution 1:
for numerical solution, you can use fsolve:
http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fsolve.html#scipy.optimize.fsolve
from scipy.optimize import fsolve
import math
def equations(p):
x, y = p
return (x+y**2-4, math.exp(x) + x*y - 3)
x, y = fsolve(equations, (1, 1))
print equations((x, y))
Solution 2:
If you prefer sympy you can use nsolve.
>>> nsolve([x+y**2-4, exp(x)+x*y-3], [x, y], [1, 1])
[0.620344523485226]
[1.83838393066159]
The first argument is a list of equations, the second is list of variables and the third is an initial guess.
Solution 3:
Short answer: use fsolve
As mentioned in other answers the simplest solution to the particular problem you have posed is to use something like fsolve
:
from scipy.optimize import fsolve
from math import exp
def equations(vars):
x, y = vars
eq1 = x+y**2-4
eq2 = exp(x) + x*y - 3
return [eq1, eq2]
x, y = fsolve(equations, (1, 1))
print(x, y)
Output:
0.6203445234801195 1.8383839306750887
Analytic solutions?
You say how to "solve" but there are different kinds of solution. Since you mention SymPy I should point out the biggest difference between what this could mean which is between analytic and numeric solutions. The particular example you have given is one that does not have an (easy) analytic solution but other systems of nonlinear equations do. When there are readily available analytic solutions SymPY can often find them for you:
from sympy import *
x, y = symbols('x, y')
eq1 = Eq(x+y**2, 4)
eq2 = Eq(x**2 + y, 4)
sol = solve([eq1, eq2], [x, y])
Output:
⎡⎛ ⎛ 5 √17⎞ ⎛3 √17⎞ √17 1⎞ ⎛ ⎛ 5 √17⎞ ⎛3 √17⎞ 1 √17⎞ ⎛ ⎛ 3 √13⎞ ⎛√13 5⎞ 1 √13⎞ ⎛ ⎛5 √13⎞ ⎛ √13 3⎞ 1 √13⎞⎤
⎢⎜-⎜- ─ - ───⎟⋅⎜─ - ───⎟, - ─── - ─⎟, ⎜-⎜- ─ + ───⎟⋅⎜─ + ───⎟, - ─ + ───⎟, ⎜-⎜- ─ + ───⎟⋅⎜─── + ─⎟, ─ + ───⎟, ⎜-⎜─ - ───⎟⋅⎜- ─── - ─⎟, ─ - ───⎟⎥
⎣⎝ ⎝ 2 2 ⎠ ⎝2 2 ⎠ 2 2⎠ ⎝ ⎝ 2 2 ⎠ ⎝2 2 ⎠ 2 2 ⎠ ⎝ ⎝ 2 2 ⎠ ⎝ 2 2⎠ 2 2 ⎠ ⎝ ⎝2 2 ⎠ ⎝ 2 2⎠ 2 2 ⎠⎦
Note that in this example SymPy finds all solutions and does not need to be given an initial estimate.
You can evaluate these solutions numerically with evalf
:
soln = [tuple(v.evalf() for v in s) for s in sol]
[(-2.56155281280883, -2.56155281280883), (1.56155281280883, 1.56155281280883), (-1.30277563773199, 2.30277563773199), (2.30277563773199, -1.30277563773199)]
Precision of numeric solutions
However most systems of nonlinear equations will not have a suitable analytic solution so using SymPy as above is great when it works but not generally applicable. That is why we end up looking for numeric solutions even though with numeric solutions: 1) We have no guarantee that we have found all solutions or the "right" solution when there are many. 2) We have to provide an initial guess which isn't always easy.
Having accepted that we want numeric solutions something like fsolve
will normally do all you need. For this kind of problem SymPy will probably be much slower but it can offer something else which is finding the (numeric) solutions more precisely:
from sympy import *
x, y = symbols('x, y')
nsolve([Eq(x+y**2, 4), Eq(exp(x)+x*y, 3)], [x, y], [1, 1])
⎡0.620344523485226⎤
⎢ ⎥
⎣1.83838393066159 ⎦
With greater precision:
nsolve([Eq(x+y**2, 4), Eq(exp(x)+x*y, 3)], [x, y], [1, 1], prec=50)
⎡0.62034452348522585617392716579154399314071550594401⎤
⎢ ⎥
⎣ 1.838383930661594459049793153371142549403114879699 ⎦
Solution 4:
Try this one, I assure you that it will work perfectly.
import scipy.optimize as opt
from numpy import exp
import timeit
st1 = timeit.default_timer()
def f(variables) :
(x,y) = variables
first_eq = x + y**2 -4
second_eq = exp(x) + x*y - 3
return [first_eq, second_eq]
solution = opt.fsolve(f, (0.1,1) )
print(solution)
st2 = timeit.default_timer()
print("RUN TIME : {0}".format(st2-st1))
->
[ 0.62034452 1.83838393]
RUN TIME : 0.0009331008900937708
FYI. as mentioned above, you can also use 'Broyden's approximation' by replacing 'fsolve' with 'broyden1'. It works. I did it.
I don't know exactly how Broyden's approximation works, but it took 0.02 s.
And I recommend you do not use Sympy's functions <- convenient indeed, but in terms of speed, it's quite slow. You will see.