Show that $I(a,b)=I(a',b')$
Hint $\ \ \left[\matrix{a'\\ b'}\right] = \left[\matrix{m & n\\ r & s}\right] \left[\matrix{a\\ b}\right] \,\Rightarrow\, a',b'\,\in I(a,b)\,\Rightarrow\, I(a',b')\subseteq I(a,b)$
The determinant $=\pm1\,$ is invertible so, by Cramer, we can solve for $\,a,b\,$ as an $R$-linear combination of $\,a',b',\,$ so a similar argument yields the reverse containment $\,I(a,b)\subseteq I(a',b')$
This clearly generalizes to show that ideals are preserved by such linear transformations with imvertible (unit) determinant, i.e. by unimodular transformations of their generators (basis).
Generally note $\,\ (a_1,\ldots,a_j) \subseteq (b_1,\ldots,b_k)\iff a_1,\ldots,a_j \in (b_1,\ldots,b_k)\iff $
$$\iff \begin{bmatrix} a_1\\ \vdots\\ a_j\end{bmatrix}\,=\,\begin{bmatrix}c_{11} &\ldots &c_{1k}\\ \vdots &\ddots & \vdots\\ c_{j1}&\ldots &c_{jk} \end{bmatrix}\begin{bmatrix} b_1\\ \vdots\\ b_k\end{bmatrix}\ \ \text{for some }\ c_{i,j}\in R$$