Continued Fraction expansion of $\tan(1)$

Prove that the continued fraction of $\tan(1)=[1;1,1,3,1,5,1,7,1,9,1,11,...]$. I tried using the same sort of trick used for finding continued fractions of quadratic irrationals and trying to find a recurrence relation, but that didn't seem to work.


We use the formula given here: Gauss' continued fraction for $\tan z$ and see that

$$\tan(1) = \cfrac{1}{1 - \cfrac{1}{3 - \cfrac{1}{5 -\dots}}}$$

Now use the identity

$$\cfrac{1}{a-\cfrac{1}{x}} = \cfrac{1}{a-1 + \cfrac{1}{1 + \cfrac{1}{x-1}}}$$

To transform $$\cfrac{1}{a - \cfrac{1}{b - \cfrac{1}{c - \dots}}}$$ to

$$\cfrac{1}{a-1 + \cfrac{1}{1 + \cfrac{1}{b-2 + \cfrac{1}{1 + \cfrac{1}{c-2 + \dots}}}}}$$

to get the expansion for $\displaystyle \tan(1)$

The above expansion for $\tan(1)$ becomes

$$ \cfrac{1}{1-1 + \cfrac{1}{1 + \cfrac{1}{3-2 + \cfrac{1}{1 + \cfrac{1}{5-2 + \dots}}}}}$$

$$ = 1 + \cfrac{1}{3-2 + \cfrac{1}{1 + \cfrac{1}{5-2 + \dots}}}$$ $$= 1 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{3 + \cfrac{1}{1 + \cfrac{1}{5 + \dots}}}}}$$

To prove the transformation,

let $\displaystyle x = b - \cfrac{1}{c - \dots}$

Then

$$ \cfrac{1}{a-\cfrac{1}{x}} = \cfrac{1}{a-1 + \cfrac{1}{1 + \cfrac{1}{x-1}}}$$ $$ = \cfrac{1}{a-1 + \cfrac{1}{1 + \cfrac{1}{b-1 + \cfrac{1}{c - \dots}}}}$$

Applying the identity again to

$$\cfrac{1}{b-1 + \cfrac{1}{c - \dots}}$$

we see that

$$\cfrac{1}{a-\cfrac{1}{x}} = \cfrac{1}{a-1 + \cfrac{1}{1 + \cfrac{1}{b-2 + \cfrac{1}{1 + \cfrac{1}{c-1 + \cfrac{1}{d - \dots}}}}}}$$

Applying again to $\cfrac{1}{c-1 + \cfrac{1}{d - \dots}}$ etc gives the required CF.