If $K = \frac{2}{1}\times \frac{4}{3}\times \cdots \times \frac{100}{99}.$ Then value of $\lfloor K \rfloor$
Note that this answer is not completely rigorous, but it was too fun to pass up.
$$K^2 = 101 \cdot \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot \dots \cdot 100 \cdot 100}{1 \cdot 3 \cdot 3 \cdot 5 \cdot \dots \cdot 99 \cdot 101}$$
Now, $$\frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot \dots}{1 \cdot 3 \cdot 3 \cdot 5 \cdot \dots} = \pi / 2$$
(This is known as the Wallis product)
So $K$ is approximately $\sqrt{101 \pi / 2}$ and $\lfloor K \rfloor = 12$
Note that $K = \dfrac{2 \cdot 2 \cdot 4 \cdot 4 \cdots 100 \cdot 100}{1 \cdot 2 \cdot 3 \cdot 4 \cdots 99 \cdot 100} = \dfrac{2^{100}(50!)^2}{100!} = \dfrac{2^{100}}{\dbinom{100}{50}}$
It can be shown that the Central Binomial Coefficent satisfies:
$\left(1-\dfrac{1}{8n}\right)\dfrac{2^{2n}}{\sqrt{\pi n}} \le \dbinom{2n}{n} \le \dfrac{2^{2n}}{\sqrt{\pi n}}\left(1-\dfrac{1}{9n}\right)$
for all $n \ge 1$.
Thus, $12.56105 \approx \dfrac{450}{449}\sqrt{50\pi} \le \dfrac{2^{100}}{\dbinom{100}{50}} \le \dfrac{400}{399}\sqrt{50\pi} \approx 12.56456$
Therefore, $\lfloor K \rfloor = 12$.