Duplication formula for gamma function
Using the Weierstrass definition for $\Gamma(x)$ and $\Gamma\Big(x + \frac12\Big)$, how can I prove the duplication formula? This is problem $10.7.3$ in the book Irresistible Integrals, by Boros and Moll.
Any help is highly appreciated.
The duplication formula can be written as
$$\frac{\Gamma(x)\Gamma(x+\frac1{2})}{\Gamma(2x)}= \frac{\Gamma(\frac1{2})}{2^{2x-1}}= \frac{\sqrt{\pi}}{2^{2x-1}}.$$
We want to derive this formula using the Weierstrass definition for the gamma function,
$$\frac1{\Gamma(x)}=xe^{\gamma x}\prod_{k=1}^{\infty}\left(1+\frac{x}{k}\right)e^{-x/k}.$$
We have
$$\frac{\Gamma(x)\Gamma(x+\frac1{2})}{\Gamma(2x)}=\frac{2xe^{2\gamma x}}{xe^{\gamma x}(x+\frac1{2})e^{\gamma x}e^{\gamma/2}}\frac{\prod_{k=1}^{\infty}\left(1+\frac{2x}{k}\right)e^{-2x/k}}{\prod_{k=1}^{\infty}\left(1+\frac{x}{k}\right)e^{-x/k}\prod_{k=1}^{\infty}\left(1+\frac{x}{k}+\frac{1}{2k}\right)e^{-x/k}e^{-1/2k}}\\ =\frac{1}{e^{\gamma/2}}\lim_{n \rightarrow \infty}\frac{2x\prod_{k=1}^{2n}\left(1+\frac{2x}{k}\right)}{x(x+\frac1{2})\prod_{k=1}^{n}\left(1+\frac{x}{k}\right)\prod_{k=1}^{n}\left(1+\frac{x}{k}+\frac{1}{2k}\right)}\frac{\prod_{k=1}^{2n}e^{-2x/k}}{(\prod_{k=1}^{n}e^{-x/k})^2\prod_{k=1}^{n}e^{-1/2k}}\\ =\frac{1}{e^{\gamma/2}}\lim_{n \rightarrow \infty}P_n(x)Q_n(x).$$
First simplify $P_n(x)$ as follows:
$$P_n(x)=\frac{2x\prod_{k=1}^{2n}\left(1+\frac{2x}{k}\right)}{x(x+\frac1{2})\prod_{k=1}^{n}\left(1+\frac{x}{k}\right)\prod_{k=1}^{n}\left(1+\frac{x}{k}+\frac{1}{2k}\right)}\\=\frac{(n!)^2}{(2n)!\left(x+n+\frac1{2}\right)}\frac{\prod_{k=0}^{n}\left(2x+2k\right)\prod_{k=0}^{n-1}\left(2x+2k+1\right)}{\prod_{k=0}^{n}\left(x+k\right)\prod_{k=0}^{n-1}\left(x+k+\frac1{2}\right)}\\=\frac{(n!)^22^{2n+1}}{(2n)!\left(x+n+\frac1{2}\right)}$$
Next consider $Q_n(x)$:
$$Q_n(x)=\frac{\prod_{k=1}^{2n}e^{-2x/k}}{(\prod_{k=1}^{n}e^{-x/k})^2\prod_{k=1}^{n}e^{-1/2k}}\\=\frac{n^{1/2}}{2^{2x}}\frac{(2n)^{2x}\prod_{k=1}^{2n}e^{-2x/k}}{(n^x\prod_{k=1}^{n}e^{-x/k})^2n^{1/2}\prod_{k=1}^{n}e^{-1/2k}}$$
Reassembling we get
$$\frac{\Gamma(x)\Gamma(x+\frac1{2})}{\Gamma(2x)}=\frac{1}{e^{\gamma/2}}\lim_{n \rightarrow \infty}\frac{(n!)^22^{2n+1}}{(2n)!\left(x+n+\frac1{2}\right)}\frac{n^{1/2}}{2^{2x}}\frac{(2n)^{2x}\prod_{k=1}^{2n}e^{-2x/k}}{(n^x\prod_{k=1}^{n}e^{-x/k})^2n^{1/2}\prod_{k=1}^{n}e^{-1/2k}}\\=\frac{1}{2^{2x-1}}\lim_{n \rightarrow \infty}\frac{n}{\left(x+n+\frac1{2}\right)}\frac{(n!)^22^{2n}}{(2n)!n^{1/2}}\frac{(2n)^{2x}\prod_{k=1}^{2n}e^{-2x/k}}{e^{\gamma/2}(n^x\prod_{k=1}^{n}e^{-x/k})^2n^{1/2}\prod_{k=1}^{n}e^{-1/2k}}.$$
We can evaluate the limit in three parts.
First,
$$\lim_{n \rightarrow \infty}\frac{n}{\left(x+n+\frac1{2}\right)}=1.$$
Second, using a well-known identity for the Euler-Mascheroni constant,
$$\lim_{n \rightarrow \infty}\frac{(2n)^{2x}\prod_{k=1}^{2n}e^{-2x/k}}{e^{\gamma/2}(n^x\prod_{k=1}^{n}e^{-x/k})^2n^{1/2}\prod_{k=1}^{n}e^{-1/2k}}=\frac{e^{-2\gamma x}}{(e^{-\gamma x})^2e^{-\gamma /2}e^{\gamma /2}}=1.$$
Third using Stirlings's asymptotic formula $n! \sim \sqrt{2\pi}n^{n+1/2}e^{-n},$
$$\lim_{n \rightarrow \infty}\frac{(n!)^22^{2n}}{(2n)!n^{1/2}}=\sqrt{\pi},$$
and finally we get
$$\frac{\Gamma(x)\Gamma(x+\frac1{2})}{\Gamma(2x)}=\frac{\sqrt{\pi}}{2^{2x-1}}.$$