Is it possible to assign a value to the sum of primes?
Solution 1:
Fröberg shows in his paper that the prime zeta function
$$P(s)=\sum_{p\in \mathbb P} \frac1{p^s}=\sum_{k=1}^\infty \frac{\mu(k)}{k}\log\zeta(ks)$$
where $\mu(k)$ and $\zeta(s)$ are respectively the Möbius and Riemann functions, cannot be analytically continued to the left half-plane, $\Re\,s\leq 0$ (in particular, we cannot give a reasonable evaluation of $P(-1)$), due to the clustering of poles along the imaginary axis arising from the nontrivial zeros of the Riemann $\zeta$ function.
Note the nasty-looking left edges in both plots above.
This result is originally due to Landau and Walfisz. See the linked papers for more details.