Iterate over nested dictionary
Is there an easy way of iterating over nested dictionary, which may consist of other objects like lists, tuples, then again dictionaries so that iteration covers all the elements of these other objects?
For example, if I type a key of a nested dictionary object, I would get it all listed in the Python interpreter.
[edit] here is example dictionary:
{
'key_1': 'value_1',
'key_2': {'key_21': [(2100, 2101), (2110, 2111)],
'key_22': ['l1', 'l2'],
'key_23': {'key_231': 'v'},
'key_24': {'key_241': 502,
'key_242': [(5, 0), (7, 0)],
'key_243': {'key_2431': [0, 0],
'key_2432': 504,
'key_2433': [(11451, 0), (11452, 0)]
},
'key_244': {'key_2441': {'key_24411': {'key_244111': 'v_24411',
'key_244112': [(5549, 0)]
},
'key_24412':'v_24412'
},
'key_2441': ['ll1', 'll2']
}
},
}
}
sorry for being unreadable, but I did the best that I could.
Solution 1:
def recurse(d):
if type(d)==type({}):
for k in d:
recurse(d[k])
else:
print d
Solution 2:
A generator version of Graddy's recurse()
answer above that should not explode on strings, and also gives you the compound key (cookie crumb trail?) showing how you arrived at a certain value:
def recurse(d, keys=()):
if type(d) == dict:
for k in d:
for rv in recurse(d[k], keys + (k, )):
yield rv
else:
yield (keys, d)
for compound_key, val in recurse(eg_dict):
print '{}: {}'.format(compound_key, val)
produces output (using the example dictionary provided in the question):
('key_1',): value_1
('key_2', 'key_21'): [(2100, 2101), (2110, 2111)]
('key_2', 'key_22'): ['l1', 'l2']
('key_2', 'key_23', 'key_231'): v
('key_2', 'key_24', 'key_241'): 502
('key_2', 'key_24', 'key_243', 'key_2433'): [(11451, 0), (11452, 0)]
('key_2', 'key_24', 'key_243', 'key_2432'): 504
('key_2', 'key_24', 'key_243', 'key_2431'): [0, 0]
('key_2', 'key_24', 'key_242'): [(5, 0), (7, 0)]
('key_2', 'key_24', 'key_244', 'key_2441'): ['ll1', 'll2']
In Python 3 the second yield loop should be replaceable with yield from
. This generator could be made more general by replacing the type(d) == dict
test with isinstance(d, collections.Mapping)
, using the Mapping ABC from the collections module.
Solution 3:
Here is another solution,
#!/usr/bin/python
d = {'key_1': 'value_1',
'key_2': {'key_21': [(2100, 2101), (2110, 2111)],
'key_22': ['l1', 'l2'],
'key_23': {'key_231': 'v'},
'key_24': {'key_241': 502,
'key_242': [(5, 0), (7, 0)],
'key_243': {'key_2431': [0, 0],
'key_2432': 504,
'key_2433': [(11451, 0), (11452, 0)]},
'key_244': {'key_2441': ['ll1', 'll2']}}}}
def search_it(nested, target):
found = []
for key, value in nested.iteritems():
if key == target:
found.append(value)
elif isinstance(value, dict):
found.extend(search_it(value, target))
elif isinstance(value, list):
for item in value:
if isinstance(item, dict):
found.extend(search_it(item, target))
else:
if key == target:
found.append(value)
return found
keys = [ 'key_242', 'key_243', 'key_242', 'key_244', 'key_1' ]
for key in keys:
f = search_it(d, key)
print 'Key: %s, value: %s' % (key, f[0])
Output:
Key: key_242, value: [(5, 0), (7, 0)]
Key: key_243, value: {'key_2433': [(11451, 0), (11452, 0)], 'key_2432': 504, 'key_2431':
[0, 0]}
Key: key_242, value: [(5, 0), (7, 0)]
Key: key_244, value: {'key_2441': ['ll1', 'll2']}
Key: key_1, value: value_1