Evaluating the indefinite integral $ \int \sqrt{\tan x} ~ \mathrm{d}{x}. $ [closed]

$$y=\int\sqrt{\tan x}\,\mathrm dx$$ $$g=\int\sqrt{\cot x}\,\mathrm dx$$

\begin{align} y+g&=\int\left(\sqrt{\tan x}+\sqrt{\cot x}\right)\,\mathrm dx \\&=\sqrt2\int\frac{\sin x+\cos x}{\sqrt{\sin2x}}\mathrm dx \\& =\sqrt2\int\frac{(\sin x-\cos x)'}{\sqrt{1-(\sin x-\cos x)^2}}\,\mathrm dx\\& =\sqrt2\int\frac{1}{\sqrt{1-u^2}}\,\mathrm du \\& =\sqrt2\sin^{-1}u \\& =\sqrt2\sin^{-1}(\sin x-\cos x)\end{align}

\begin{align} y-g&=\int\left(\sqrt{\tan x}-\sqrt{\cot x}\right)\,\mathrm dx \\& =\sqrt2\int\frac{\sin x-\cos x}{\sqrt{\sin2x}} \,\mathrm dx\\& =-\sqrt2\int\frac{(\sin x+\cos x)'}{\sqrt{(\sin x+\cos x)^2-1}}\,\mathrm dx \\& =-\sqrt2\int\frac{\mathrm ds}{\sqrt{s^2-1}} \\& =-\sqrt2\cosh^{-1}(\sin x+\cos x) \end{align} \begin{align}y&=\frac{(y-g)+(y+g)}2 \\&= \frac{\sqrt2}2(\sin^{-1}(\sin x-\cos x)-\cosh^{-1}(\sin x+\cos x)) + C\end{align}


Let $I = \int\sqrt{\tan x}\;\mathrm{d}x$ and $J = \int\sqrt{\cot x}\;\mathrm{d}x$.

Now $$\begin{align}I + J &= \int\left(\sqrt{\tan x} + \sqrt{\cot x}\right) \;\mathrm{d}x \\ &= \sqrt{2} \int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \;\mathrm{d}x \\[5pt] &= \sqrt{2} \int\frac{(\sin x - \cos x)'}{\sqrt{1-(\sin x - \cos x)^2}} \;\mathrm{d}x \\[5pt] &= \sqrt{2} \sin^{-1}(\sin x - \cos x) + \mathbb{C_1} \tag{1} \\ \end{align}$$

and $$\begin{align}I - J &= \int\left(\sqrt{\tan x} - \sqrt{\cot x}\right) \;\mathrm{d}x \\ &= \sqrt{2} \int\frac{(\sin x - \cos x)}{\sqrt{\sin 2x}} \;\mathrm{d}x \\ &= -\sqrt{2} \int\frac{(\sin x + \cos x)'}{\sqrt{(\sin x + \cos x)^2 - 1}} \;\mathrm{d}x \\ &= -\sqrt{2} \ln\left|(\sin x + \cos x) + \sqrt{(\sin x + \cos x)^2 - 1}\right| + \mathbb{C_2} \tag{2} \\ \end{align}$$

Now, adding $(1)$ and $(2)$:

$$I = \frac{1}{\sqrt{2}} \sin^{-1}(\sin x - \cos x) - \frac{1}{\sqrt{2}} \ln\left|\sin x + \cos x + \sqrt{\sin 2x} \vphantom{x^{x^x}} \right| + \mathbb{C}$$


Let $u = \sqrt{\tan x}$, then $u^2 = \tan x$. Thus $2u\;\mathrm{d}u = \sec^2 x\;\mathrm{d}x = (u^4 + 1)\mathrm{d}x$. Thus $\mathrm{d}x = \dfrac{2u\;\mathrm{d}u}{u^4 + 1}$. So:

$$\int\sqrt{\tan x}\;\mathrm{d}x = \int\frac{2u^2}{u^4+1}\;\mathrm{d}u$$ You can take it from here.


As already mentioned in some answers, let $t^2=\tan x \implies 2tdt=\sec^2x dx\implies dx=\frac{2tdt}{t^4+1}$. Now, We can easily reach to the final answer as follows $$I=\int \frac{2t^2 dt}{t^4+1}=\int \frac{2 dt}{t^2+\frac{1}{t^2}}=\int \frac{\left(1+\frac{1}{t^2}\right)+\left(1-\frac{1}{t^2}\right) dt}{t^2+\frac{1}{t^2}}$$ $$=\int \frac{\left(1+\frac{1}{t^2}\right) dt}{t^2+\frac{1}{t^2}}+\int \frac{\left(1-\frac{1}{t^2}\right) dt}{t^2+\frac{1}{t^2}}=\int \frac{\left(1+\frac{1}{t^2}\right) dt}{\left(t-\frac{1}{t}\right)^2+2}+\int \frac{\left(1-\frac{1}{t^2}\right) dt}{\left(t+\frac{1}{t}\right)^2-2}$$ $$=\int \frac{\left(1+\frac{1}{t^2}\right) dt}{\left(t-\frac{1}{t}\right)^2+(\sqrt{2})^2}+\int \frac{\left(1-\frac{1}{t^2}\right) dt}{\left(t+\frac{1}{t}\right)^2-(\sqrt{2})^2}$$ $$=\frac{1}{\sqrt{2}}\tan^{-1}\left(\frac{t-\frac{1}{t}}{\sqrt{2}}\right)+\frac{1}{2\sqrt{2}}\ln \left(\frac{\left(t+\frac{1}{t}\right)-\sqrt{2}}{\left(t+\frac{1}{t}\right)+\sqrt{2}}\right)+C$$ Now, substituting the value of $t$, we get $$I=\frac{1}{\sqrt{2}}\tan^{-1}\left(\frac{\sqrt{\tan x}-\frac{1}{\sqrt{\tan x}}}{\sqrt{2}}\right)+\frac{1}{2\sqrt{2}}\ln\left(\frac{\sqrt{\tan x}+\frac{1}{\sqrt{\tan x}}-\sqrt{2}}{\sqrt{\tan x}+\frac{1}{\sqrt{\tan x}}+\sqrt{2}}\right)+C$$ $$=\frac{1}{\sqrt{2}}\tan^{-1}\left(\frac{\sqrt{\tan x}-\sqrt{\cot x}}{\sqrt{2}}\right)+\frac{1}{2\sqrt{2}}\ln\left(\frac{\sqrt{\tan x}+\sqrt{\cot x}-\sqrt{2}}{\sqrt{\tan x}+\sqrt{\cot x}+\sqrt{2}}\right)+C$$ $$=\frac{1}{\sqrt{2}}\tan^{-1}\left(\frac{\sin x-\cos x}{\sqrt{\sin 2x}}\right)+\frac{1}{2\sqrt{2}}\ln\left(\frac{\sin x+\cos x-\sqrt{\sin 2x}}{\sin x+\cos x+\sqrt{\sin 2x}}\right)+C$$


A slight improvement: instead of $u^2=\tan\theta$, let $u^2=2\tan\theta$. This gives $$I=\frac1{\sqrt2}\int \frac{4u^2}{u^4+4}\,du =\frac1{\sqrt2}\int \frac{u}{u^2-2u+2}-\frac{u}{u^2+2u+2}\,du\ .$$ Observe that except for the constant out the front, no surds are involved. Now substitute $v=u-1$ for the first bit and $v=u+1$ for the second bit. You will need to be careful with the algebra, but it's not all that bad.