Unless I'm missing something, this is the preimage of I+J (I missed something... this is not correct)

If $I,J$ are ideals in $B$ then $f^{-1}(I),f^{-1}(J)\subseteq f^{-1}(I+J)$ so $f^{-1}(I)+f^{-1}(J)\subseteq f^{-1}(I+J)$.

On the other hand, if $x\in f^{-1}(I+J)$ then $f(x)=i+j,\; i\in I,j\in J$. Let $a\in f^{-1}(I)$ such that $f(a)=i$, and $b\in f^{-1}(J),\;f(b)=j$ then $f(a+b)=i+j=f(x)$ so $a+b=x+k$ where $k \in ker(f)$. $ker(f)\subseteq f^{-1}(I)+f^{-1}(J)$ and $a,b\in f^{-1}(I)+f^{-1}(J)$ so also $x \in f^{-1}(I)+f^{-1}(J)$ and we get that $f^{-1}(I+J)\subseteq f^{-1}(I)+f^{-1}(J)$


ok, another try

let $f:\mathbb{Z}[x]\rightarrow \mathbb{Q}[x]$ be the inclusion function. If $I=(x-3)\mathbb{Q}[x],\; J=x \mathbb{Q}[x]$ then their preimage is $(x-3)\mathbb{Z}[x], \; x\mathbb{Z}[x]$ (I used here Gauss lemma). The sum of the preimages is not all of $\mathbb{Z}[x]$ and it contains 3. If it is in itself a preimage of K then it $3\in K$ in $\mathbb{Q}[x]$ which is invertible and so this is all of $\mathbb{Q}[x]$ and we get a contradiction.

Hope this one is ok....


Let $k$ be field of caracteristic $\neq 2$, $A=k[x,y], B=k[x,y,x^{-1},y^{-1}]$ and take $f:A\hookrightarrow B$ be inclusion. Example for what you want is $I=(x+y)B, J=(x-y)B$.

Then $f^{-1}I=(x+y)A, f^{-1}J=(x-y)A$ and $f^{-1}I+f^{-1}J=(x,y)A$ . Since $(x,y)B=B$, sum $f^{-1}I+f^{-1}J$ can not be $f^{-1}$ of ideal in $B$