Surely You're Joking, Mr. Feynman! $\int_0^\infty\frac{\sin^2x}{x^2(1+x^2)}\,dx$ [duplicate]

Prove the following \begin{equation}\int_0^\infty\frac{\sin^2x}{x^2(1+x^2)}\,dx=\frac{\pi}{4}+\frac{\pi}{4e^2}\end{equation}

I would love to see how Mathematics SE users prove the integral preferably with the Feynman way (other methods are welcome). Thank you. (>‿◠)✌


Original question:

And of course, for the sadist with a background in differential equations, I invite you to try your luck with the last integral of the group.

\begin{equation}\int_0^\infty\frac{\sin^2x}{x^2(1+x^2)}\,dx\end{equation}

Source: Integration: The Feynman Way


Here is my attempt: \begin{align} \int_0^\infty\frac{\sin^2x}{x^2(1+x^2)}dx&=\int_0^\infty\left[\frac{\sin^2x}{x^2}-\frac{\sin^2x}{1+x^2}\right]dx\\ &=\int_0^\infty\frac{\sin^2x}{x^2}dx-\frac{1}{2}\int_0^\infty\frac{1-\cos2x}{1+x^2}dx\\ &=\frac{\pi}{2}-\frac{1}{2}\int_0^\infty\frac{1}{1+x^2}dx+\frac{1}{2}\int_0^\infty\frac{\cos2x}{1+x^2}dx\\ &=\frac{\pi}{2}-\frac{1}{2}\frac{\pi}{2}+\frac{1}{2}\frac{\pi}{2e^2}\\ &=\frac{\pi}{4}+\frac{\pi}{4e^2} \end{align} where I use these links: $\displaystyle\int_0^\infty\frac{\sin^2x}{x^2}dx$ and $\displaystyle\int_0^\infty\frac{\cos2x}{1+x^2}dx$ to help me out.

Unfortunately, this is not the Feynman way but I still love this method.


Consider $$ I(a)=\int_0^\infty\frac{\sin^2(ax)}{x^2(x^2+1)}dx $$ Differentiate it twice. Since $$ \int_0^\infty\frac{\cos(kx)}{x^2+1}dx=\frac{\pi}{2e^k} $$ for $k>0$ we get $I''(a)=\pi e^{-2a}$. Note that $I'(0)=I(0)=0$, so after solving respective IVP we get $$ I(a)=\frac{\pi}{4}(-1+2a+e^{-2a}) $$ Now it only remains to substitute for $a=1$.


This integral is readily evaluated using Parseval's theorem for Fourier transforms. (I am certain that Feynman had this theorem in his tool belt.) Recall that, for transform pairs $f(x)$ and $F(k)$, and $g(x)$ and $G(k)$, the theorem states that

$$\int_{-\infty}^{\infty} dx \, f(x) g^*(x) = \frac1{2 \pi} \int_{-\infty}^{\infty} dk \, F(k) G^*(k) $$

In this case, $f(x) = \frac{\sin^2{x}}{x^2}$ and $g(x) = 1/(1+x^2)$. Then $F(k) = \pi (1-|k|/2) \theta(2-|k|)$ and $G(k) = \pi \, e^{-|k|}$. ($\theta$ is the Heaviside function, $1$ when its argument is positive, $0$ when negative.) Using the symmetry of the integrand, we may conclude that

$$\begin{align}\int_0^{\infty} dx \frac{\sin^2{x}}{x^2 (1+x^2)} &= \frac{\pi}{2} \int_0^{2} dk \, \left ( 1-\frac{k}{2} \right ) e^{-k} \\ &= \frac{\pi}{2} \left (1-\frac1{e^2} \right ) - \frac{\pi}{4} \int_0^{2} dk \, k \, e^{-k} \\ &= \frac{\pi}{2} \left (1-\frac1{e^2} \right ) + \frac{\pi}{2 e^2} - \frac{\pi}{4} \left (1-\frac1{e^2} \right )\\ &= \frac{\pi}{4} \left (1+\frac1{e^2} \right )\end{align} $$